Skip to main content

Local Smoothing Constraint in Convolutional Neural Network for Image Denoising

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11632))

Included in the following conference series:

  • 1767 Accesses

Abstract

In this paper, we demonstrate that not only natural images but also their intermediate responses of convolutional neural networks (CNNs) have local smoothing priors. To imposing the local smoothing constraint, we design a local smoothing layer, which is able to suppress noises in a local receptive field. Further, we arrange the local smoothing layer in the early layers of CNNs to effectively capture context information, which is helpful to recovery image details. Experimental results validate that the proposed denoising method outperforms several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurusamy, R., Subramaniam, D.: A machine learning approach for MRI brain tumor classification. CMC Comput. Mater. Continua 53(2), 91–108 (2018)

    Google Scholar 

  2. Kan, X., Zhang, Y., Zhu, L., Xiao, L.: Snow cover mapping for mountainous areas by fusion of MODIS L1B and geographic data based on stacked denoising auto-encoders. CMC Comput. Mater. Continua. 57(1), 49–68 (2018)

    Article  Google Scholar 

  3. Smith, S.M., Brady, J.M.: SUSAN–a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  4. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 839–846 (1998)

    Google Scholar 

  5. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  6. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1022–1038 (1999)

    Google Scholar 

  10. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Computer Vis. Pattern Recogn. 2, 60–65 (2005)

    MATH  Google Scholar 

  11. Yang, J., Wright, J., Huang, T.S., et al.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  13. Dong, C., Loy, C.C., He, K., et al.: Image superresolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  14. Hui, T.-W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_22

    Chapter  Google Scholar 

  15. Wang, Z., Liu, D., Chang, S., et al.: D3: deep dual-domain based fast restoration of JPEG-compressed images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2764–2772 (2016)

    Google Scholar 

  16. Dong, C., Deng, Y., Change, L.C., et al.: Compression Artifacts Reduction by a Deep Convolutional Network, pp. 576–584 (2015)

    Google Scholar 

  17. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  18. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  19. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399 (2012)

    Google Scholar 

  20. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  21. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. arXiv preprint arXiv:1608.03981 (2016)

  22. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  23. Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336–3351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  25. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. He, K., Zhang, X., Ren, S.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)

    Google Scholar 

  28. Bevilacqua, M., Roumy, A., Guillemot, C., et al.: Low-complexity singleimage super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  29. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  30. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205 (2009)

    Article  Google Scholar 

  31. He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  32. Vedaldi, A., Lenc, K.: Matconvnet–convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692. ACM (2015)

    Google Scholar 

  33. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781 (2014)

    Google Scholar 

  34. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: Computer Vision (ICCV), pp. 479–486 (2011)

    Google Scholar 

  35. Gu, S., Zhang, L., Zuo, W., et al.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Guo or Zhaojing Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Jiang, F., Zhao, D., Wen, Z., Liu, S. (2019). Local Smoothing Constraint in Convolutional Neural Network for Image Denoising. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11632. Springer, Cham. https://doi.org/10.1007/978-3-030-24274-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24274-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24273-2

  • Online ISBN: 978-3-030-24274-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics