Abstract
A review of state of art reveals that the characterization and analysis of the relation between problem-algorithm has been focused only on problem features or on algorithm features; or in some situations on both, but the algorithm logical is not considered in the analysis. The above for selecting an algorithm will give the best solution. However there is more knowledge for discovering from this relation. In this paper, significant features are proposed for describing problem structure and algorithm searching fluctuation; other known metrics were considered (Autocorrelation Coefficient and Length) but were not significant. A causal study case is performed for analyzing causes and effects from: Bin-Packing problem structure, Temperature, searching behavior of Threshold Accepting algorithm and final performance to solving problem instances. The proposed features permitted in the causal study to find relations cause-effect; which gave guidelines for designing a Threshold Accepting self-adaptive algorithm. Its performance outperforms to original algorithm in 74% out of 324 problem cases. The causal analysis on relevant information from problem, algorithm (both) and algorithm logical could be an important guideline to discover rules or principles over several problem domains, which permit the design of self-adaptive algorithms to give the best solution to complex problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Soares, C., Pinto, J.: Ranking learning algorithms: using IBL and Meta-learning on accuracy and time results. J. Mach. Learn. 50(3), 251–277 (2003)
Pérez, J., Pazos, R.A., Frausto, J., Rodríguez, G., Romero, D., Cruz, L.: A statistical approach for algorithm selection. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 417–431. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24838-5_31
Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29
Vanchipura, R., Sridharan, R.: Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 67, 1337–1353 (2013)
Le, M.N., Ong, Y.S., Jin, Y., Sendhoff, B.: Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput. 1(3), 175–190 (2009)
Cayci, A., Menasalvas, E., Saygin, Y., Eibe, S.: Self-configuring data mining for ubiquitous computing. Inf. Sci. 246, 83–99 (2013)
Tavares, J.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst. Man Cybern. Part B 38(3), 604–616 (2008)
Pérez, J., Cruz, L., Landero, V.: Explaining performance of the threshold accepting algorithm for the bin packing problem: a causal approach. Polish J. Environ. Stud. 16(5B), 72–76 (2007)
Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: AAAI, vol. 10, pp. 210–216 (2010)
Quiroz, M., Cruz, L., Torrez, J., Gómez, C.: Improving the performance of heuristic algorithms based on exploratory data analysis. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, Studies in Computational Intelligence. SCI, vol. 452, pp. 361–375. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33021-6_29
Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)
Ries, J., Beullens, P.: A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. J. Oper. Res. Soc. 66(5), 782–793 (2015)
Yong, X., Feng, D., Rongchun, Z.: Optimal selection of image segmentation algorithms based on performance prediction. In: Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, pp. 105–108. Australian Computer Society, Inc. (2004)
Yuen, S., Zhang, X.: Multiobjective evolutionary algorithm portfolio: choosing suitable algorithm for multiobjective optimization problem. In: IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp. 1967–1973 (2014)
Wagner, M., Lindauer, M., Misir, M., et. al.: A case of study of algorithm selection for the travelling thief problem. J. Heuristics 1–26 (2017)
Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding the empirical hardness of NP-complete problems. Mag. Commun. ACM 57(5), 98–107 (2014)
Mull, N., Fremont, D.J., Seshia, S.A.: On the hardness of SAT with community structure. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 141–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_10
Cruz, L., Gómez, C., Pérez, J., Landero, V., Quiroz, M., Ochoa, A.: Algorithm Selection: From Meta-learning to Hyper-heuristics. INTECH Open Access Publisher (2012)
Pavón, R., Díaz, F., Laza, R., Luzón, M.V.: Experimental evaluation of an automatic parameter setting system. Expert Syst. Appl. 37(7), 5224–5238 (2010)
Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_3
Yeguas, E., Luzón, M.V., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a Bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)
Biedenkapp, A., Lindauer, M.T., Eggensperger, K., Hutter, F., Fawcett, C., Hoos, H.H.: Efficient parameter importance analysis via ablation with surrogates. In: AAAI, pp. 773–779 (2017)
Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.-É., Hoos, H.H.: Automatically configuring multi-objective local search using multi-objective optimisation. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 61–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_5
Guo, H., Hsu, W.H.: A learning-based algorithm selection meta-reasoner for the real-time MPE problem. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 307–318. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30549-1_28
Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In: Burke, V.A. (ed.) Proceedings of the 16th Biennial European Conference on Artificial Intelligence, pp. 475–479. IOS Press, Valencia (2004)
Hoos, H.H., Smyth, K., Stützle, T.: Search space features underlying the performance of stochastic local search algorithms for MAX-SAT. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 51–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_6
Konak, A.: Simulation optimization using tabu search: an empirical study. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of Winter simulation Conference, pp. 2686–2692 (2005)
Chevalier, R.: Balancing the effects of parameter settings on a genetic algorithm for multiple fault diagnosis. In: Artificial Intelligence. University of Georgia (2006)
Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_31
Munoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of continuous space optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87 (2015)
Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47(3–4), 295–328 (2006)
Montero, E., Riff, M.-C.: On-the-fly calibrating strategies for evolutionary algorithms. Inf. Sci. 181, 552–566 (2011)
Pérez, J., et al.: An application of causality for representing and providing formal explanations about the behavior of the threshold accepting algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, Jacek M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1087–1098. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_102
Pérez, J., et al.: A causal approach for explaining why a heuristic algorithm outperforms another in solving an instance set of the bin packing problem. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 591–598. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68123-6_64
Pérez, J., Cruz, L., Pazos, R., Landero, V., Pérez, V.: Application of causal models for the selection and redesign of heuristic algorithms for solving the bin-packing problem. Polish J. Environ. Stud. 17(4C), 25–30 (2008). (ACS-AISBIS 2008)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, Cambridge (2001)
Korb, K.: Bayesian Artificial Intelligence. Chapman and Hall, London (2004)
McGeoch, C.C.: Experimental analysis of algorithms. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 62, pp. 489–513. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-5362-2_14
Khuri, S., Schütz, M., Heitkötter, J.: Evolutionary heuristics for the bin packing problem. In: Artificial Neural Nets and Genetic Algorithms, pp. 285–288. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-7535-4_75
Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)
Beasley, J.E.: OR-Library. Brunel University (2006). http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
Scholl, A., Klein, R. (2003). http://www.wiwi.uni-jena.de/Entscheidung/binpp/
Fayyad, U., Irani, K.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. IJCAI 1022–1029 (1993)
Merz, P., Freisleben, B., et al.: Fitness landscapes and memetic algorithm design. New Ideas Optim. 245–260 (1999)
Hugin Expert. www.hugin.com
Norsys Corporation. www.norsys.com
Dataplot. www.itl.nist.gov/div898/software/dataplot/homepage.htm
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Landero, V., Pérez, J., Cruz, L., Turrubiates, T., Ríos, D. (2019). Effects in the Algorithm Performance from Problem Structure, Searching Behavior and Temperature: A Causal Study Case for Threshold Accepting and Bin-Packing. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-24289-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24288-6
Online ISBN: 978-3-030-24289-3
eBook Packages: Computer ScienceComputer Science (R0)