Skip to main content

Development of a Technological Platform for Knowledge Discovery

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The paper considers the architecture of the technological platform designed for construction of the knowledge base (KB) by integrating a set of logical rules with fuzzy ontologies. The KB represents the storage of knowledge and contexts of different problem areas (PrA). The PrA ontology context is a specific state of the KB content that an expert can choose from a set of available states. The state is a result of either versioning or constructing the KB content from different points of views. Also, the paper describes the application of the KB in the inference of expert recommendations on solving the problem situations that occurred in the process of local area network functioning.

The study was supported by the Ministry of Science and Higher Education of the Russian Federation in framework of projects 2.4760.2017/8.9 and 2.1182.2017/4.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubiolo, M., Caliusco, M.L., Stegmayer, G., Coronel, M., Gareli Fabrizi, M.: Knowledge discovery through ontology matching: an approach based on an artificial neural network model. Inf. Sci. 194, 107–119 (2012)

    Article  Google Scholar 

  2. Renu, R.S., Mocko, G., Koneru, A.: Use of big data and knowledge discovery to create data backbones for decision support systems. Procedia Comput. Sci. 20, 446–453 (2013)

    Article  Google Scholar 

  3. Ltifi, H., Kolski, C., Ben Ayed, M., Alimi, A.M.: A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22, 69–96 (2013)

    Article  Google Scholar 

  4. Rajpathak, D., Chougule, R., Bandyopadhyay, P.: A domain-specific decision support system for knowledge discovery using association and text mining. Knowl. Inf. Syst. 31, 405–432 (2012)

    Article  Google Scholar 

  5. Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923–930 (2008)

    Google Scholar 

  6. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2695–2700 (2010)

    Google Scholar 

  7. Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2005), pp. 562–567 (2005)

    Google Scholar 

  8. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based methodology for E-service discovery. Inf. Syst. 31, 361–380 (2005)

    Article  Google Scholar 

  9. Guarino, N., Musen, M.A.: Ten years of applied ontology. Appl. Ontol. 10, 169–170 (2015)

    Article  Google Scholar 

  10. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_2

    Chapter  Google Scholar 

  11. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N.: An ontology pattern language for service modeling. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 321–326 (2016)

    Google Scholar 

  12. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering data mining. In: ICDM 2003, pp. 541–544 (2003)

    Google Scholar 

  13. Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 14 Jan 2019

  14. Medche, A., Staab, S.: Ontology learning for the Semantic Web. https://www.csee.umbc.edu/courses/771/papers/ieeeIntelligentSystems/ontologyLearning.pdf. Accessed 14 Jan 2019

  15. Neo4j: Official site. https://neo4j.com/product. Accessed 14 Jan 2019

  16. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Seman. Web 2, 71–87 (2011)

    Google Scholar 

  17. Pellet Framework Available. https://github.com/stardog-union/pellet. Accessed 14 Jan 2019

  18. SWRL: A semantic web rule language combining OWL and RuleML. https://www.w3.org/Submission/SWRL. Accessed 14 Jan 2019

  19. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  20. Yarushkina, N., Filippov, A., Moshkin, V.: Development of the unified technological platform for constructing the domain knowledge base through the context analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017. Communications in Computer and Information Science, vol. 754, pp. 62–72. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65551-2_5

    Chapter  Google Scholar 

  21. Yarushkina, N.G., Filippov, A.A., Moshkin, V.S., Filippova, L.I.: Application of the fuzzy knowledge base in the construction of expert systems. Inf. Technol. Ind. 6, 32–37 (2018)

    Google Scholar 

  22. Shestakov, V.K.: Development and maintenance of information systems based on ontology and Wiki-technology, Electronic Libraries: Advanced Methods and Technologies, Digital Collections, pp. 299–306 (2011). (in Russian)

    Google Scholar 

  23. Hattori, S., Takama, Y.: Recommender system employing personal-value-based user model. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 18, 157–165 (2014)

    Article  Google Scholar 

  24. Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology engineering by combining ontology patterns. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 173–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarushkina, N., Filippov, A., Moshkin, V. (2019). Development of a Technological Platform for Knowledge Discovery. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics