Skip to main content

Workflow Discovery Through Semantic Constraints: A Geovisualization Case Study

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11621))

Included in the following conference series:

Abstract

The construction of computational pipelines, for example automated cartographic workflows for the construction of thematic maps, typically requires detailed knowledge about the available tools for the individual steps and the technicalities of their composition. It is a time-consuming process and comes with the risk of missing meaningful workflows because many possible pipelines are never taken into account. Automated workflow composition techniques can facilitate comprehensive workflow discovery based on semantic constraints: The users express their intention about the workflows by means of high-level constraints, and receive possible workflows that meet their request. The successful application of such methods essentially depends on the availability and quality of semantic domain models that describe the tools and data types in the domain. In this paper, we present an exemplary domain model for a geovisualization use case, and show how it enables the abstract specification and automated composition of a complex cartographic workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 27 June 2019

    The original version of the chapter starting on p. 473 unfortunately contained a mistake. The presentation of Figures 4 and 5 was incorrect. The figures have been corrected.

Notes

  1. 1.

    In this context, synthesis refers to the automatic creation of a concrete sequence of semantically described components according to an abstract specification [8].

References

  1. Abstract Specifications—OGC. https://www.opengeospatial.org/docs/as

  2. CSISS/GMU Geospatial Web Services. http://cube.csiss.gmu.edu/grassweb/manuals/index.html. Accessed 14 Feb 2019

  3. Scientific workflow system. https://en.wikipedia.org/w/index.php?title=Scientific_workflow_system&oldid=877419140. Accessed 14 Feb 2019

  4. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration (2017). http://hdl.handle.net/10255/move.644

  5. Albrecht, J., Derman, B., Ramasubramanian, L.: Geo-ontology tools: the missing link, 12, 409–424 (2008)

    Article  Google Scholar 

  6. Asche, H.: Process-oriented geoinformation systems and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 324–324. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-1_31

    Chapter  Google Scholar 

  7. Atkinson, M., Gesing, S., Montagnat, J., Taylor, I.: Scientific workflows: past, present and future. Futur. Gener. Comput. Syst. 75, 216–227 (2017)

    Article  Google Scholar 

  8. Bodik, R., Jobstmann, B.: Algorithmic program synthesis: introduction. Int. J. Softw. Tools Technol. Transf. 15(5), 397–411 (2013)

    Article  Google Scholar 

  9. Chen, L., et al.: Towards a knowledge-based approach to semantic service composition. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 319–334. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_21

    Chapter  Google Scholar 

  10. Cox, S.J.D.: An explicit owl representation of ISO/OGC observations and measurements. In: Proceedings of SSN 13, SSN 2013, vol. 1063, pp. 1–18. CEUR-WS.org, Aachen (2013)

    Google Scholar 

  11. Coyne, M.S., Godley, B.J.: Satellite tracking and analysis tool (STAT): an integrated system for archiving, analyzing and mapping animal tracking data. Mar. Ecol. Prog. Ser. 301, 1–7 (2005). https://doi.org/10.3354/meps301001

    Article  Google Scholar 

  12. Dodge, K.L., Galuardi, B., Miller, T.J., et al.: Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3), e91726 (2014). https://doi.org/10.1371/journal.pone.0091726

    Article  Google Scholar 

  13. García-Chapeton, G.A., Ostermann, F.O., de By, R.A., Kraak, M.J.: Enabling collaborative GeoVisual analytics: systems, techniques, and research challenges. Trans. GIS 22(3), 640–663 (2018)

    Article  Google Scholar 

  14. GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation (2018). Accessed 14 Feb 2019

    Google Scholar 

  15. Gil, Y., Ratnakar, V., Kim, J., et al.: Wings: intelligent workflow-based design of computational experiments. IEEE Intell. Syst. 26(1), 62–72 (2011)

    Article  Google Scholar 

  16. Ison, J., Kalaš, M., Jonassen, I., et al.: EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics 29, 1325–1332 (2013)

    Article  Google Scholar 

  17. Ison, J., Rapacki, K., Ménager, H., et al.: Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Res. 44(D1), D38–D47 (2015)

    Article  Google Scholar 

  18. Johnston, K., Ver Hoef, J.M., Krivoruchko, K., Lucas, N.: Using ArcGIS Geostatistical Analyst, vol. 380. Esri, Redlands (2001)

    Google Scholar 

  19. Kleyheeg, E., van Dijk, J.G.B., Tsopoglou-Gkina, D., et al.: Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5(1), 2 (2017). https://doi.org/10.1186/s40462-016-0092-7

    Article  Google Scholar 

  20. Kona, S., Bansal, A., Blake, M., Gupta, G.: Generalized semantics-based service composition. In: ICWS 2008, pp. 219–227. IEEE Computer Society (2008)

    Google Scholar 

  21. Kranstauber, B., et al.: The movebank data model for animal tracking. Environ. Model. Softw. 26(6), 834–835 (2011)

    Article  Google Scholar 

  22. Kuhn, W.: Core concepts of spatial information for transdisciplinary research. Int. J. Geogr. Inf. Sci. 26(12), 2267–2276 (2012)

    Article  Google Scholar 

  23. Lamprecht, A.L.: User-Level Workow Design - A Bioinformatics Perspective. Lecture Notes in Computer Science, vol. 8311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45389-2

    Book  Google Scholar 

  24. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based service composition. BMC Bioinform. 10 Suppl 10, S8 (2009)

    Google Scholar 

  25. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-based loose programming. In: Proceedings of QUATIC 2010, Portugal, pp. 262–267. IEEE (2010)

    Google Scholar 

  26. Lehmann, J., Athanasiou, S., Both, A., et al.: The GeoKnow handbook. Technical report (2015). http://jens-lehmann.org/files/2015/geoknow_handbook.pdf

  27. Lemmens, R., Wytzisk, A., de By, R., Granell, C., Gould, M., Van Oosterom, P.: Integrating semantic and syntactic descriptions to chain geographic services. IEEE Internet Comput. 10(5), 42–52 (2006)

    Article  Google Scholar 

  28. Liu, J., Pacitti, E., Valduriez, P., et al.: A survey of data-intensive scientific workflow management. J. Grid Comput. 13(4), 457–493 (2015)

    Article  Google Scholar 

  29. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. Int. J. Softw. Tools Technol. Transf. 15(5), 603–618 (2013)

    Article  MATH  Google Scholar 

  30. Martin, D., et al.: Bringing semantics to web services: the OWL-S approach. In: Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1_4

    Chapter  Google Scholar 

  31. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose programming with PROPHETS. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_7

    Chapter  Google Scholar 

  32. Palmblad, M., Lamprecht, A.L., Ison, J., Schwämmle, V.: Automated workflow composition in mass spectrometry-based proteomics (2018)

    Article  Google Scholar 

  33. Reza, K., Krzysztof, J., Femke, R., Luc, B., Ali, A.: Collaborative ontology development for the geosciences. Trans. GIS 18(6), 834–851 (2014). https://doi.org/10.1111/tgis.12070

    Article  Google Scholar 

  34. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: An introduction to search combinators. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 2–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38197-3_2

    Chapter  Google Scholar 

  35. Simon, M., Asche, H.: Automated spatial data processing and refining. In: Lamprecht, A.-L. (ed.) ISoLA 2012/2014. CCIS, vol. 683, pp. 38–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51641-7_3

    Chapter  Google Scholar 

  36. Steffen, B., Margaria, T., Freitag, B.: Module configuration by minimal model construction. Technical report, FMI, Universität Passau (1993)

    Google Scholar 

  37. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_21

    Chapter  Google Scholar 

  38. Wessel, P., Smith, W.H.F.: Free software helps map and display data. EOS Trans. Am. Geophys. Union 72(41), 441–446 (1991)

    Article  Google Scholar 

  39. Wessel, P., Smith, W.H., Scharroo, R., et al.: Generic mapping tools: improved version released. EOS Trans. Am. Geophys. Union 94(45), 409–410 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vedran Kasalica or Anna-Lena Lamprecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kasalica, V., Lamprecht, AL. (2019). Workflow Discovery Through Semantic Constraints: A Geovisualization Case Study. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics