Abstract
In this paper we propose a methodology to solve the problem of locating a set of cameras in an uncontrolled open space, such as a city. For this purpose, the geometric approach of the problem is transformed towards the optimization of a surveillance service system in which a metaheuristic model is used to maximize the service capabilities of the set of cameras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, T., Gelsthorpe, L.: Public attitudes towards CCTV in public places. Stud. Crime Crime Prev. 5(1), 72–90 (1996)
Waples, S., Gill, M., Fisher, P.: Does CCTV displace crime? Criminol. Crim. Justice 9(2), 207–224 (2009)
Li, A.: Pros and Cons of Surveillance Cameras in Public Places (2017). https://reolink.com/pros-cons-of-surveillance-cameras-in-public-places
Bowcott, O.: CCTV boom has failed to slash crime, say police (2008). https://www.theguardian.com/uk/2008/may/06/ukcrime1
Norris, C., McCahill, M., Wood, D.: The growth of CCTV: a global perspective on the international diffusion of video surveillance in publicly accessible space. Surveill. Soc. 2(2–3), 110–135 (2004). Editorial
Kelly, H.: After Boston: The pros and cons of surveillance cameras (2013). https://edition.cnn.com/2013/04/26/tech/innovation/security-cameras-boston-bombings/index.html
Bodor, R., Schrater, P., Papanikolopoulos, N.: Multi-camera positioning to optimize task observability. In: IEEE International Conference on Advanced Video And Signal Based Surveillance - Proceedings of AVSS 2005 (2005). https://doi.org/10.1109/AVSS.2005.1577328
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C 34(3), 334–352 (2004). https://doi.org/10.1016/j.artint.2008.12.005
Jun, S., Chang, T., Yoon, H.: Placing visual sensors using heuristic algorithms for bridge surveillance. Appl. Sci. 8(1) (2018). https://doi.org/10.3390/app8010070
Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circ. Syst. Video Technol. 18(8), 1114–1127 (2008). https://doi.org/10.1109/TCSVT.2008.927109
Hogan, K., ReVelle, C.: Concepts and applications of backup coverage. Manag. Sci. 32(11), 1290–1306 (2012)
Rana, S.: Isovist Analyst - An Arcview extension for planning visual surveillance. ESRI International User Conference. ESRI (on CD-ROM), 1(Chvátal), 9 (2006). http://eprints.ucl.ac.uk/2104
Basu, S., Sharma, M., Ghosh, P.S.: Metaheuristic applications on discrete facility location problems: a survey. OPSEARCH 52, 530 (2015). https://doi.org/10.1007/s12597-014-0190-5
Jordanski, M.: Metaheuristic approaches for solving facility location and scale decision problem with customer preference. IPSI BgD Trans. (Two Res. Oriented J.) 13(1) (2017). http://ipsitransactions.org/journals/papers/tir/2017jan/p2.pdf
Xie, Y., Wang, M., Liu, X., Wu, Y.: Surveillance video synopsis in GIS. ISPRS Int. J. Geo-Inf. (2017). https://doi.org/10.3390/ijgi6110333
Konda, K.R., Conci, N.: Global and local coverage maximization in multi-camera networks by stochastic optimization. Infocommun. J. (2013). https://doi.org/10.1200/jco.2011.35.9182
Xu, Y.C., Lei, B., Hendriks, E.A.: Camera network coverage improving by particle swarm optimization. EURASIP J. Image Video Process. (2011). https://doi.org/10.1155/2011/458283
O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)
Church, R., Meadows, M.: Location modeling utilizing maximum service distance criteria. Geogr. Anal. 11(4), 358–373 (1979)
Murray, A., Kim, K., Davis, J., Machiraju, R., Parent, R.: Coverage optimization to support security monitoring. Comput. Environ. Urban Syst. (2007). https://doi.org/10.1016/j.compenvurbsys.2006.06.002
Giagkiozis, I., Purshouse, R., Fleming, P.: An overview of population-based algorithms for multi-objective optimization. Int. J. Syst. Sci. 46(9), 1572–1599 (2015). https://doi.org/10.1080/00207721.2013.823526
Tong, D., Murray, A.: Spatial optimization in geography. Ann. Assoc. Am. Geogr. 102(6), 1434–1444 (1986)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341 (1997). https://doi.org/10.1023/A:1008202821328
Li, X., Yin, M.: Application of differential evolution algorithm on self-potential data. PLoS ONE 7(12), e51199 (2012). https://doi.org/10.1371/journal.pone.0051199
Datos de Afluencia. Patronato de la Feria Nacional de San Marcos - Coordinación Estatal de Planeación y Proyectos. http://www.aguascalientes.gob.mx/ceplap/datos/default.aspx
Historia de la Feria Nacional de San Marcos en Aguascalientes: México Desconocido, 31 March 2016. https://www.mexicodesconocido.com.mx/feria-san-marcos-aguascalientes.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tapia-McClung, R., Gómez-Fernández, T. (2019). A Methodology for Defining Smart Camera Surveillance Locations in Urban Settings. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-24302-9_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24301-2
Online ISBN: 978-3-030-24302-9
eBook Packages: Computer ScienceComputer Science (R0)