Skip to main content

cartesius fort - object fortran Library for Chemistry and Materials Science

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11622))

Included in the following conference series:

Abstract

Modeling of structure and properties of molecules and materials (crystals/solids) on the basis of their electronic structure is one of the most important consumers of computer resources (processor time, memory and storage). The known attempts to improve its efficiency reduce to massive parallelization. This approach ignores enormous diversity of types of structures and behaviors of molecules and materials. Moreover, this diversity is by no means reflected in the paradigm currently dominating the field of molecular/material modeling.

Much more efficient is, of course, a thorough analysis of the physical conditions occurring in different molecules/materials. On this way we could successfully build a series of efficient methods targeted upon specific classes of molecules/materials: inorganic ones with open d-shells and organic ones featuring local two-center bonds and developed conjugated \(\uppi \)-systems (generalized chromophores).

The experience gained formulates as a new concept of semi-empirism: that is selecting the electronic wave function of a system under study as a product of the wave functions of the chromophores present in the system. This called for a new development: of a library of objects representing different types of chromophores to be freely combinable to represent an arbitrary molecule/material so that its respective parts (chromophores) are modeled by the most efficient method suitable for the specific type of the chromophore and taking into account the interactions between them. Apparently, the deep segmentation of the system achieved within the new concept of semi-empirism allows for the efficient parallelization and more efficient usage of the HPC software.

T-platforms company (Russia) is acknowledged for support extended to the symposium “Quantum Chemical Modeling of Solids with Computers: from Plane Waves to Local Structures (QuaCheSol 2019)” in the frame of the “The 19th International Conference on Computational Science and its Applications (ICCSA 2019)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not in totality seek for unity, rather in uniformity of separation—K. Prutkov.

  2. 2.

    Values must be supplied by metadata including indication to the tensor type of the quantity - \(\mathbb {R}\), \(\mathbb {C}\), \(\mathbb {H}\); rank; space to which the tensor belongs, basis in this space relative to which the quantity is given, units, and mode: whether the quantity is a parameter (input) or result of calculation (output).

References

  1. Nazarian, D., Camp, J.S., Chung, Y.G., Snurr, R.Q., Sholl, D.S.: Chem. Mater. 29, 2521 (2017)

    Article  Google Scholar 

  2. (a) Kresse, G., Hafner, J.: Phys. Rev. B 47 (1993) 558–561; (b) Kresse, G., Furthmüller, J.: Phys. Rev. B 54 (1996) 11169

    Google Scholar 

  3. Gonze, X., et al.: Comput. Phys. Commun. 180, 2582 (2009)

    Article  Google Scholar 

  4. Baroni, S., et al.: J. Phys. Condens. Matt. 29, 465901 (2017)

    Article  Google Scholar 

  5. Zaanen, J., Sawatzky, G.A., Allen, J.: Phys. Rev. Lett. 55, 418 (1985)

    Article  Google Scholar 

  6. Xiang, H., Dronskowski, R., Eck, B., Tchougréeff, A.L.: J. Phys. Chem. A 114, 12345 (2010)

    Article  Google Scholar 

  7. Tchougréeff, A.L., Dronskowski, R.: J. Phys. Chem. A 115, 4547 (2011)

    Article  Google Scholar 

  8. Phung, Q.M., Domingo, A., Pierloot, K.: Chem. Eur. J. 24, 5183 (2018)

    Article  Google Scholar 

  9. Thiel, W.: QM/MM methodology: fundamentals, scope, and limitations in multiscale simulation methods in molecular sciences. In: Grotendorst, J., Attig, N., Blügel, S., Marx, D. (eds.) Institute for Advanced Simulation, Forschungszentrum Jülich, NIC Series, vol. 42, p. 203 (2009)

    Google Scholar 

  10. Tchougréeff, A.L.: Hybrid Methods of Molecular Modeling. Springer, Netherlands (2008). https://doi.org/10.1007/978-1-4020-8189-7

    Book  Google Scholar 

  11. Tchougréeff, A.L.: Khim. Fiz., 16 (1997) No 6, 62. [Chem. Phys. Reports, 16 (1997) 1035]

    Google Scholar 

  12. Tchougréeff, A.L.: Phys. Chem. Chem. Phys. 1, 1051 (1999)

    Article  Google Scholar 

  13. Gasteiger, J., Engel, T. (eds.) Chemoinformatics. Wiley-VCH Verlag GmbH & Co (2003)

    Google Scholar 

  14. Heller, S., McNaught, A., Stein, S., Tchekhovskoi, D., Pletnev, I.: J. Cheminform. 5, 7 (2013)

    Article  Google Scholar 

  15. Heller, S., McNaught, A., Pletnev, I., Stein, S., Tchekhovskoi, D.: J. Cheminform. 7, 23 (2015)

    Article  Google Scholar 

  16. Daudel, R.: In: Pullman, B., Parr, R. (eds.) The New World of Quantum Chemistry, vol. 2, p. 33. Springer, Netherlands (1976). https://doi.org/10.1007/978-94-010-1523-3

    Google Scholar 

  17. McNaught, A.D., Wilkinson, A.: Compendium of Chemical Terminology. The Gold Book, 2nd edn. Blackwell Science, Oxford (1997)

    Google Scholar 

  18. McNaught, A.D., Wilkinson, A.: Compendium of Chemical Terminology. The Gold Book, Version 2.3.3, 24 February 2014

    Google Scholar 

  19. Gordan, P., Alexejeff, V.G.: Z. Phys. Chem. 35, 610 (1900); Alexejeff, V.G.: Z. phys. Chem. 36, 740 (1901)

    Google Scholar 

  20. Tchougréeff, A.L.: Int. J. Quant. Chem. 116, 137 (2016)

    Article  Google Scholar 

  21. Shaik, S., Hiberty, P.C.: A Chemist’s Guide to Valence Bond Theory. Wiley, Hoboken (2007)

    Book  Google Scholar 

  22. Boucher, R., Heller, S., McNaught, A.: Chem. Int. 39, 47 (2017)

    Article  Google Scholar 

  23. “Ferrocene, for instance, may be drawn with the central iron atom connected to each of the two attached rings, to each of the atoms in the rings, to each of the bonds in the rings or not connected at all. The approach taken by InChI is to logically dissociate all atoms capable of forming coordination bonds (metals) and represent the structure as the individual, interconnected components along with the separated, unconnected metal atoms. For a large majority of organometallic compounds, this provides a unique InChI. If a bonded organometallic structure representation is desired, however, it may be specified by adding another series of layers to the InChI.” S.E. Stein, S.R. Heller, D.V. Tchekhovskoi, I.V. Pletnev IUPAC International Chemical Identifier (InChI) InChI version 1, Software version 1.05 Technical Manual. Biomolecular Measurement Division. National Institute of Standards and Technology, Gaithersburg, Maryland, USA. However, this InChI does not necessarily represent adequately their electronic structure: a great advantage of the ‘classical’ structure

    Google Scholar 

  24. Bauerschmidt, S., Gasteiger, J.: J. Chem. Inf. Comput. Sci. 37, 705 (1997)

    Article  Google Scholar 

  25. Witt, O.N.: Ber. Deut. Chem. Ges. 9, 522 (1876)

    Article  Google Scholar 

  26. Ruedenberg, K.: Rev. Mod. Phys. 34, 326 (1962)

    Article  Google Scholar 

  27. Hückel, E.: Z. für Physik 60, 423 (1930); Hückel, E., Hückel, W.: Nature 129, 937 (1932); E. Hückel singled out \(\uppi \)-systems; actually it was clear yet to Pauling and Rumer that in benzene it goes about the description of a collective state of six spins 1/2, but the relation of these spins namely to \(\uppi \)-orbitals

    Google Scholar 

  28. Soudackov, A.V., Tchougréeff, A.L., Misurkin, I.A.: Theor. Chim. Acta 83, 389 (1992)

    Article  Google Scholar 

  29. Harrison, W.A.: Electronic Structure and the Properties of Solids. Freeman, San Francisco (1990)

    Google Scholar 

  30. Bethe, H.A.: Ann. Phys. 3, 133 (1929)

    Article  Google Scholar 

  31. Descartes, R.: Discours de la Méthode, J’ai Lu (2004). (original publication: Imprimerie Ian Meyre a Leyde, 1637)

    Google Scholar 

  32. Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Oxford, Amsterdam, NY (1984)

    Google Scholar 

  33. Tchougréeff, A.L.: Int. J. Quant. Chem. 107, 2519–2538 (2007)

    Article  Google Scholar 

  34. Tchougréeff, A.L., Soudackov, A.V.: Russ. J. Phys. Chem. 88, 1904 (2014)

    Article  Google Scholar 

  35. Tchougréeff, A.L., Soudackov, A.V., van Leusen, J., Kögerler, P., Becker, K.-D., Dronskowski, R.: Int. J. Quant. Chem. 116, 282 (2016)

    Article  Google Scholar 

  36. Tchougréeff, A.L.: J. Struct. Chem. 48, S39 (2007). (in Russian); J. Struct. Chem. 48, S32 (2007). (in English)

    Google Scholar 

  37. Chapman, S.J.: Fortran 95/2003 for Scientists and Engineers, Third Edition The McGraw-Hill Companies, 2008; Intel & #x00AE;Fortran Language Reference. 2003–2005, Intel Corporation; Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T.: The Fortran 2003 Handbook. The Complete Syntax, Features and Procedures. Springer Science+Business Media (2009)

    Google Scholar 

  38. Languages come and go, paradigms ripe and rot, the whole software business is a part of fashion industry now. But when you want your plane to fly, you still need to do the maths with your trusty Fortran. That’s the beauty of the things that work; they don’t have to change much. https://wordsandbuttons.online/fortran_is_still_a_thing.htm

  39. Popov, I.V., Tchougréeff, A.L.: Comput. Theor. Chem. 1116, 141 (2017)

    Article  Google Scholar 

  40. Popov, I.V., Tchougréeff, A.L.: Theor. Chem. Acc. 138, 9 (2019)

    Article  Google Scholar 

  41. Popov, I.V., Slavin, V.V., Tchougréeff, A.L., Dronskowski, R.: Carbon (Submitted)

    Google Scholar 

  42. NetLaboratory system. https://netlab.cartesius.info/

Download references

Acknowledgments

Prof. Dr. I.V. Pletnev (Moscow) is acknowledged for valuable literature indications relative to InChI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei L. Tchougréeff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tchougréeff, A.L. (2019). cartesius fort - object fortran Library for Chemistry and Materials Science. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics