Skip to main content

Multi-objective Optimization of Solar Thermal Systems Applied to Residential Building in Portugal

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Thermal-economic evaluation represents an effective tool to optimize thermal systems. This study presents a mathematical model that encloses the physical variable equations and a set of equations that define the purchase cost of the main system components. The main objective of this study is the thermo-economic optimisation of solar thermal systems for residential building applications, considering a multi-objective approach. The simulations were performed through a MatLab code, by implementing an elitist variant of NASGA-II. The numerical model disclosed a Pareto front considering the optimal trade-off solutions for the minimum investment cost and the maximum solar collection efficiency. The optimal solutions disclose a set of optimal solutions for which the solar collection efficiency vary 28.3% and 77.0% and the investment costs vary between 2,099€ and 3,308€. Results show that gains in solar collection efficiency above 70% imply a great increase in the total purchase cost, implying a bump of almost 1,000€, from a total investment cost of 2,200€ to 3,200€. As a conclusion, the solar collector area is one of the most important decision variables in the multi-objective optimization of thermal-economic analysis of solar thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. da Graça, G.C., Augusto, A., Lerer, M.M.: Solar powered net zero energy houses for southern Europe: feasibility study. Sol. Energy. 86, 634–646 (2012). https://doi.org/10.1016/j.solener.2011.11.008

    Article  Google Scholar 

  2. Neves, D., Silva, C.A.: Modeling the impact of integrating solar thermal systems and heat pumps for domestic hot water in electric systems – the case study of Corvo Island. Renew. Energy 72, 113–124 (2014). https://doi.org/10.1016/j.renene.2014.06.046

    Article  Google Scholar 

  3. Evarts, J.C., Swan, L.G.: Domestic hot water consumption estimates for solar thermal system sizing. Energy Build. 58, 58–65 (2013). https://doi.org/10.1016/j.enbuild.2012.11.020

    Article  Google Scholar 

  4. Kalogirou, S.A.: Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 231–295 (2004). https://doi.org/10.1016/j.pecs.2004.02.001

    Article  Google Scholar 

  5. Ong, K.S., Tong, W.L.: System performance of U-Tube and heat pipe solar water heaters. J. Appl. Sci. Eng. 15, 105–110 (2012)

    Google Scholar 

  6. Sahin, B., Kodal, A.: Performance analysis of an endoreversible heat engine based on a new thermoeconomic optimization criterion. Energy Convers. Manag. 42, 1085–1093 (2001). https://doi.org/10.1016/S0196-8904(00)00120-5

    Article  Google Scholar 

  7. Ferreira, A.C.M., et al.: An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario. Energy 45, 436–444 (2012). https://doi.org/10.1016/j.energy.2012.05.054

    Article  Google Scholar 

  8. Ferreira, A.C., Nunes, M., Martins, L., Teixeira, S.: Maximum profit of a cogeneration system based on stirling thermodynamic cycle. In: 2014 14th International Conference on Computational Science and Its Applications, pp. 156–160. IEEE (2014)

    Google Scholar 

  9. Bejan, A., Tsatsaronis, G., Moran, M.: Thermal Design and Optimization. Wiley, New York (1996)

    MATH  Google Scholar 

  10. Assaf, J., Shabani, B.: Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm. Energy Convers. Manag. 164, 518–532 (2018). https://doi.org/10.1016/j.enconman.2018.03.026

    Article  Google Scholar 

  11. Lin, W., Ma, Z., Ren, H., Gschwander, S., Wang, S.: Multi-objective optimisation of thermal energy storage using phase change materials for solar air systems. Renew. Energy 130, 1116–1129 (2019). https://doi.org/10.1016/j.renene.2018.08.071

    Article  Google Scholar 

  12. Antoniadis, C.N., Martinopoulos, G.: Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS. Renew. Energy 137, 56–66 (2019). https://doi.org/10.1016/j.renene.2018.03.074

    Article  Google Scholar 

  13. Yılmaz, İ.H.: Residential use of solar water heating in Turkey: a novel thermo-economic optimization for energy savings, cost benefit and ecology. J. Clean. Prod. 204, 511–524 (2018). https://doi.org/10.1016/j.jclepro.2018.09.060

    Article  Google Scholar 

  14. Asadi, J., Amani, P., Amani, M., Kasaeian, A., Bahiraei, M.: Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Convers. Manag. 173, 715–727 (2018). https://doi.org/10.1016/j.enconman.2018.08.013

    Article  Google Scholar 

  15. Tian, Y., Zhao, C.Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013). https://doi.org/10.1016/j.apenergy.2012.11.051

    Article  Google Scholar 

  16. Lebeña, E.P., Costa, J.C.: Installers of thermal solar equipment. In: INETI/DGEG (ed.) Conversão Térmica da Energia Solar, pp. 1–89. INETI/DGEG, Lisboa (2008)

    Google Scholar 

  17. Greenstream Publishing: Solar Electricity Handbook. http://www.solarelectricityhandbook.com/solar-irradiance.html

  18. Ferreira, A.C., Nunes, M.L., Teixeira, J.C.F., Martins, L.A.S.B., Teixeira, S.F.C.F.: Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes. Energy 111, 1–17 (2016). https://doi.org/10.1016/j.energy.2016.05.091

    Article  Google Scholar 

  19. MathWorks, M.: gaoptimset: Create genetic algorithm options structure (2014). https://www.mathworks.com/help/gads/gamultiobj.html

  20. Ferreira, A.C.M., Rocha, A.M.A.C., Teixeira, S.F.C.F., Nunes, M.L., Martins, L.B.: On solving the profit maximization of small cogeneration systems. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7335, pp. 147–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31137-6_11

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author would like to express her gratitude for the support given by the Portuguese Foundation for Science and Technology (FCT) through the Post-Doc Research Grant SFRH/BPD/121446/2016. This work has been supported by FCT within the Project Scope UID/CEC/00319/2019 (ALGORITMI) and Project Scope UID/EMS/04077/2019 (METRICS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferreira, A.C., Silva, Â., Teixeira, S. (2019). Multi-objective Optimization of Solar Thermal Systems Applied to Residential Building in Portugal. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11624. Springer, Cham. https://doi.org/10.1007/978-3-030-24311-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24311-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24310-4

  • Online ISBN: 978-3-030-24311-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics