Skip to main content

Robotic Simulator of Vocal Fold Paralysis

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Included in the following conference series:

  • 1765 Accesses

Abstract

Vocal fold disorders impact significantly on quality of life. Specifically, vocal fold paralysis can affect the ability to speak and breathe. To date, there has been a shortage of studies providing a quantitative characterisation of the effect of paralysed vocal folds on the frequency and amplitude of sound in phonation. In this paper we propose a novel bioinspired robotic simulator that physically replicates both healthy vocal fold function and two main pathological conditions in vocal fold paralysis: bilateral and unilateral paralysis. By analysing the audio data produced by our robotic simulator a correlation can be drawn between each type of paralysis and the effects on amplitude and frequency. Results show that in a healthy configuration, frequency response and vocal fold stress are mostly proportional and that their relationship is highly impacted by paralysis. In addition, our experimental results provide a mapping between vocal fold position and tension in our simulator and the resulting sound. These insights will inform laryngeal surgical procedures and help improve the effectiveness of current implant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boothroyd, A., Medwetsky, L.: Spectral distribution of /s/ and the frequency response of hearing aids. Ear Hear. 13(3), 150–157 (1992)

    Article  Google Scholar 

  2. Chan, R.W., Titze, I.R.: Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results. J. Acoust. Soc. Am. 106(4), 2008–2021 (1999)

    Article  Google Scholar 

  3. Cohen, S.M., Kim, J., Roy, N., Asche, C., Courey, M.: Prevalence and causes of dysphonia in a large treatment-seeking population. Laryngoscope 122(2), 343–348 (2012)

    Article  Google Scholar 

  4. Endo, N., Kojima, T., Ishihara, H., Horii, T., Asada, M.: Design and preliminary evaluation of the vocal cords and articulator of an infant-like vocal robot “lingua”. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 1063–1068. IEEE (2014)

    Google Scholar 

  5. Fukui, K., Shintaku, E., Honda, M., Takanishi, A.: Mechanical vocal cord for anthropomorphic talking robot based on human biomechanical structure. Jpn. Soc. Mech. Eng. Int. 73(734), 112–118 (2007)

    Google Scholar 

  6. Higashimoto, T., Sawada, H.: A mechanical voice system: construction of vocal cords and its pitch control. In: International Conference on Intelligent Technologies, vol. 7624768 (2003)

    Google Scholar 

  7. Honda, M., Fukui, K., Ogane, R., Takanishi, A.: Pathological voice production by mechanical vocal cord model. In: 9th International Seminar on Speech Production 2011, ISSP, Montreal, Canada, pp. 49–56 (2011)

    Google Scholar 

  8. Kamel, K.S., Lau, G., Stringer, M.D.: In vivo and in vitro morphometry of the human trachea. Clin. Anat. Off. J. Am. Assoc. Clin. Anat. Br. Assoc. Clin. Anat. 22(5), 571–579 (2009)

    Google Scholar 

  9. von Kempelen, W.: Mechanismus der menschlichen Sprache nebst der Beschreibung seiner sprechenden Maschine. Uppsala Univ. (1982)

    Google Scholar 

  10. Lee, S.I.: Spectral analysis of mandarin Chinese sibilant fricatives. In: ICPhS, pp. 1178–1181 (2011)

    Google Scholar 

  11. Luo, X., Hinton, J., Liew, T., Tan, K.: Les modelling of flow in a simple airway model. Med. Eng. Phys. 26(5), 403–413 (2004)

    Article  Google Scholar 

  12. Maryn, Y., De Bodt, M., Roy, N.: The acoustic voice quality index: toward improved treatment outcomes assessment in voice disorders. J. Commun. Disord. 43(3), 161–174 (2010)

    Article  Google Scholar 

  13. Mirza, N., Ruiz, C., Baum, E.D., Staab, J.P.: The prevalence of major psychiatric pathologies in patients with voice disorders. Ear Nose Throat J. 82(10), 808–812 (2003)

    Article  Google Scholar 

  14. Mittal, R., Zheng, X., Bhardwaj, R., Seo, J.H., Xue, Q., Bielamowicz, S.: Toward a simulation-based tool for the treatment of vocal fold paralysis. Front. Physiol. 2, 19 (2011)

    Article  Google Scholar 

  15. Nishikawa, K., Asama, K., Hayashi, K., Takanobu, H., Takanishi, A.: Development of a talking robot. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 3, pp. 1760–1765. IEEE (2000)

    Google Scholar 

  16. Reiter, R., Hoffmann, T.K., Pickhard, A., Brosch, S.: Hoarseness-causes and treatments. Deutsches Ärzteblatt Int. 112(19), 329 (2015)

    Google Scholar 

  17. Rubin, A.D., Sataloff, R.T.: Vocal fold paresis and paralysis. Otolaryngol. Clin. North Am. 40(5), 1109–1131 (2007)

    Article  Google Scholar 

  18. Schwartz, S.R., et al.: Clinical practice guideline: hoarseness (dysphonia). Otolaryngol. Head Neck Surg. 141(1–suppl), 1–31 (2009)

    Article  Google Scholar 

  19. Schwarz, K., Cielo, C.A., Steffen, N., Jotz, G.P., Becker, J.: Voice and vocal fold position in men with unilateral vocal fold paralysis. Braz. J. Otorhinolaryngol. 77(6), 761–767 (2011)

    Article  Google Scholar 

  20. Sittel, C.: Larynx: implantate und stents. Laryngo-rhino-otologie 88(S 01), S119–S124 (2009)

    Article  Google Scholar 

  21. Titze, I.R., Alipour, F.: The myoelastic aerodynamic theory of phonation. National Center for Voice and Speech (2006)

    Google Scholar 

  22. Titze, I.R., Martin, D.W.: Principles of voice production (1998)

    Article  Google Scholar 

  23. Yin, J., Zhang, Z.: Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies. J. Biomech. Eng. 136(11), 111006 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elena Giannaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giannaccini, M.E. et al. (2019). Robotic Simulator of Vocal Fold Paralysis. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics