Skip to main content

Design, Optimization and Characterization of Bio-Hybrid Actuators Based on 3D-Bioprinted Skeletal Muscle Tissue

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Included in the following conference series:

Abstract

The field of bio-hybrid robotics aims at the integration of biological components with artificial materials in order to take advantage of many unique features occurring in nature, such as adaptability, self-healing or resilience. In particular, skeletal muscle tissue has been used to fabricate bio-actuators or bio-robots that can perform simple actions. In this paper, we present 3D bioprinting as a versatile technique to develop these kinds of actuators and we focus on the importance of optimizing the designs and properly characterizing their performance. For that, we introduce a method to calculate the force generated by the bio-actuators based on the deflection of two posts included in the bio-actuator design by means of image processing algorithms. Finally, we present some results related to the adaptation, controllability and force modulation of our bio-actuators, paving the way towards a design- and optimization-driven development of more complex 3D-bioprinted bio-actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patino, T., Mestre, R., Sánchez, S., et al.: Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications. Lab Chip 16, 3626–3630 (2016). https://doi.org/10.1039/C6LC90088G

    Article  Google Scholar 

  2. Carlsen, R.W., Sitti, M.: Bio-hybrid cell-based actuators for microsystems. Small 10, 3831–3851 (2014). https://doi.org/10.1002/smll.201400384

    Article  Google Scholar 

  3. Ricotti, L., Trimmer, B., Feinberg, A.W., et al.: Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017). https://doi.org/10.1126/scirobotics.aaq0495

    Article  Google Scholar 

  4. Mestre, R., Patiño, T., Barceló, X., et al.: Force modulation and adaptability of 3D bioprinted biological actuators based on skeletal muscle tissue. Adv. Mater. Technol. 4, 1800631 (2018)

    Article  Google Scholar 

  5. Akiyama, Y., Sakuma, T., Funakoshi, K., et al.: Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip 13, 4870–4880 (2013). https://doi.org/10.1039/c3lc50490e

    Article  Google Scholar 

  6. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., et al.: Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007). https://doi.org/10.1126/science.1146885

    Article  Google Scholar 

  7. Cvetkovic, C., Raman, R., Chan, V., et al.: Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 111, 10125–10130 (2014). https://doi.org/10.1073/pnas.1401577111

    Article  Google Scholar 

  8. Mestre, R., Patiño, T., Barceló, X., Sanchez, S.: 3D bioprinted muscle-based bio-actuators: force adaptability due to training. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 316–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_33

    Chapter  Google Scholar 

  9. Morimoto, Y., Onoe, H., Takeuchi, S.: Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci. Robot. 3, eaat4440 (2018). https://doi.org/10.1126/scirobotics.aat4440

    Article  Google Scholar 

  10. Pagan-Diaz, G.J., Zhang, X., Grant, L., et al.: Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Adv. Funct. Mater. 1801145, 1–13 (2018). https://doi.org/10.1002/adfm.201801145

    Article  Google Scholar 

  11. Nawroth, J.C., Lee, H., Feinberg, A.W., et al.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792–797 (2012). https://doi.org/10.1038/nbt.2269

    Article  Google Scholar 

  12. Park, S.-J., Gazzola, M., Park, K.S., et al.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016). https://doi.org/10.1126/science.aaf4292

    Article  Google Scholar 

  13. Lind, J.U., Busbee, T.A., Valentine, A.D., et al: Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 1 (2016). https://doi.org/10.1038/nmat4782

    Article  Google Scholar 

  14. Legant, W.R., Pathak, A., Yang, M.T., et al.: Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. 106, 10097–10102 (2009). https://doi.org/10.1073/pnas.0900174106

    Article  Google Scholar 

  15. Kang, H.-W., Lee, S.J., Ko, I.K., et al.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016). https://doi.org/10.1038/nbt.3413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mestre, R., Patiño, T., Guix, M., Barceló, X., Sanchez, S. (2019). Design, Optimization and Characterization of Bio-Hybrid Actuators Based on 3D-Bioprinted Skeletal Muscle Tissue. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics