Skip to main content

Deciding Context Unification (with Regular Constraints)

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11647))

Included in the following conference series:

  • 363 Accesses

Abstract

Given a ranked alphabet, context are terms with a single occurrence of a special symbol \({\bullet }\) (outside of the alphabet), which represents a missing subterm. One can naturally build equations over contexts: the context variables are treated as symbols of arity one and a substitution S assigns to each such a variable a context S(X). A substitution S is extended to terms with context variables in a natural way: S(X(t)) is a context S(X) in which the unique occurrence of \({\bullet }\) is replaced with S(t). For historical reasons, the satisfiability of context equations is usually referred to as context unification.

Context unification generalizes word equations and first-order term unification (which are decidable) and is subsumed by second order unification (which is undecidable) and its decidability status remained open for almost two decades. In this paper I will sketch a PSPACE algorithm for this problem. The idea is to apply simple compression rules (replacing pairs of neighbouring function symbols) to the solution of the context equation; to this end we appropriately modify the equation (without the knowledge of the actual solution) so that compressing the solution can be simulated by compressing parts of the equation. When the compression operations are appropriately chosen, then the size of the instance is polynomial during the whole algorithm, thus giving a PSPACE-upper bound. The best known lower bounds are as for word equations, i.e. NP. The method can be extended to the scenario in which tree-regular constraints for the variables are present, in which case the problem is EXPTIME-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comon, H.: Completion of rewrite systems with membership constraints. Part I: deduction rules. J. Symb. Comput. 25(4), 397–419 (1998). https://doi.org/10.1006/jsco.1997.0185

    Article  MATH  Google Scholar 

  2. Comon, H.: Completion of rewrite systems with membership constraints. Part II: constraint solving. J. Symb. Comput. 25(4), 421–453 (1998). https://doi.org/10.1006/jsco.1997.0186

    Article  MATH  Google Scholar 

  3. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–140 (2005). https://doi.org/10.1016/j.ic.2005.04.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://doi.org/10.1016/j.ic.2016.09.009

    Article  MathSciNet  MATH  Google Scholar 

  5. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types for logic programs. In: LICS, pp. 300–309. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.151654

  6. Gascón, A., Godoy, G., Schmidt-Schauß, M., Tiwari, A.: Context unification with one context variable. J. Symb. Comput. 45(2), 173–193 (2010). https://doi.org/10.1016/j.jsc.2008.10.005

    Article  MathSciNet  MATH  Google Scholar 

  7. Gascón, A., Schmidt-Schauß, M., Tiwari, A.: Two-restricted one context unification is in polynomial time. In: Kreutzer, S. (ed.) CSL. LIPIcs, vol. 41, pp. 405–422. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.CSL.2015.405

  8. Gascón, A., Tiwari, A., Schmidt-Schauß, M.: One context unification problems solvable in polynomial time. In: LICS, pp. 499–510. IEEE (2015). https://doi.org/10.1109/LICS.2015.53

  9. Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor. Comput. Sci. 13, 225–230 (1981). https://doi.org/10.1016/0304-3975(81)90040-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_21. Full version http://arxiv.org/abs/1310.4367

    Chapter  Google Scholar 

  11. Jeż, A.: Recompression: a simple and powerful technique for word equations. J. ACM 63(1), 4:1 (2016). https://doi.org/10.1145/2743014

    Article  MathSciNet  MATH  Google Scholar 

  12. Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 332–346. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61464-8_63

    Chapter  Google Scholar 

  13. Levy, J., Agustí-Cullell, J.: Bi-rewrite systems. J. Symb. Comput. 22(3), 279–314 (1996). https://doi.org/10.1006/jsco.1996.0053

    Article  MathSciNet  MATH  Google Scholar 

  14. Levy, J., Schmidt-Schauß, M., Villaret, M.: The complexity of monadic second-order unification. SIAM J. Comput. 38(3), 1113–1140 (2008). https://doi.org/10.1137/050645403

    Article  MathSciNet  MATH  Google Scholar 

  15. Levy, J., Schmidt-Schauß, M., Villaret, M.: On the complexity of bounded second-order unification and stratified context unification. Log. J. IGPL 19(6), 763–789 (2011). https://doi.org/10.1093/jigpal/jzq010

    Article  MathSciNet  MATH  Google Scholar 

  16. Levy, J., Villaret, M.: Linear second-order unification and context unification with tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975_11

    Chapter  MATH  Google Scholar 

  17. Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326–339. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45610-4_23

    Chapter  Google Scholar 

  18. Makanin, G.: The problem of solvability of equations in a free semigroup. Matematicheskii Sbornik 2(103), 147–236 (1977). (in Russian)

    MathSciNet  MATH  Google Scholar 

  19. Marcinkowski, J.: Undecidability of the first order theory of one-step right ground rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 241–253. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_75

    Chapter  MATH  Google Scholar 

  20. Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite trees, context unification, and one-step rewriting. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 34–48. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6_4

    Chapter  Google Scholar 

  21. Niehren, J., Pinkal, M., Ruhrberg, P.: A uniform approach to underspecification and parallelism. In: Cohen, P.R., Wahlster, W. (eds.) ACL, pp. 410–417. Morgan Kaufmann Publishers/ACL (1997). https://doi.org/10.3115/979617.979670

  22. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3), 483–496 (2004). https://doi.org/10.1145/990308.990312

    Article  MathSciNet  MATH  Google Scholar 

  23. RTA Problem List: Problem 90 (1990). http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html

  24. Schmidt-Schauß, M.: Unification of stratified second-order terms. Internal Report 12/94, Johann-Wolfgang-Goethe-Universität (1994)

    Google Scholar 

  25. Schmidt-Schauß, M.: A decision algorithm for distributive unification. Theor. Comput. Sci. 208(1–2), 111–148 (1998). https://doi.org/10.1016/S0304-3975(98)00081-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmidt-Schauß, M.: A decision algorithm for stratified context unification. J. Log. Comput. 12(6), 929–953 (2002). https://doi.org/10.1093/logcom/12.6.929

    Article  MathSciNet  MATH  Google Scholar 

  27. Schmidt-Schauß, M.: Decidability of bounded second order unification. Inf. Comput. 188(2), 143–178 (2004). https://doi.org/10.1016/j.ic.2003.08.002

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmidt-Schauß, M., Schulz, K.U.: On the exponent of periodicity of minimal solutions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 61–75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052361

    Chapter  Google Scholar 

  29. Schmidt-Schauß, M., Schulz, K.U.: Solvability of context equations with two context variables is decidable. J. Symb. Comput. 33(1), 77–122 (2002). https://doi.org/10.1006/jsco.2001.0438

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmidt-Schauß, M., Schulz, K.U.: Decidability of bounded higher-order unification. J. Symb. Comput. 40(2), 905–954 (2005). https://doi.org/10.1016/j.jsc.2005.01.005

    Article  MathSciNet  MATH  Google Scholar 

  31. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7_4

    Chapter  Google Scholar 

  32. Treinen, R.: The first-order theory of linear one-step rewriting is undecidable. Theor. Comput. Sci. 208(1–2), 179–190 (1998). https://doi.org/10.1016/S0304-3975(98)00083-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Vorobyov, S.: The first-order theory of one step rewriting in linear Noetherian systems is undecidable. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 254–268. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_76

    Chapter  MATH  Google Scholar 

  34. Vorobyov, S.: \(\forall \exists \)*-Equational theory of context unification is \(\varPi \)\({}_{1}^{0}\)-hard. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 597–606. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055810

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Jeż .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeż, A. (2019). Deciding Context Unification (with Regular Constraints). In: Hofman, P., Skrzypczak, M. (eds) Developments in Language Theory. DLT 2019. Lecture Notes in Computer Science(), vol 11647. Springer, Cham. https://doi.org/10.1007/978-3-030-24886-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24886-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24885-7

  • Online ISBN: 978-3-030-24886-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics