Skip to main content

Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11638))

Included in the following conference series:

  • 662 Accesses

Abstract

This paper presents new complexity and non-approximation results concerning two color propagation problems, namely Power Edge Set and Zero Forcing Set. We focus on cubic graphs, exploiting their structural properties to improve and refine previous results. We also give hardness results for parameterized precolored versions of these problems, and a polynomial-time algorithm for Zero Forcing Set in proper interval graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing, 5–7 May 1982, San Francisco, California, USA, pp. 303–309 (1982)

    Google Scholar 

  3. Barioli, F., et al.: Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428, 1628–1648 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)

    Article  MathSciNet  Google Scholar 

  5. Darties, B., Champseix, N., Chateau, A., Giroudeau, R., Weller, M.: Complexity and lowers bounds for power edge set problem. J. Discrete Algorithms 52–53, 70–91 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485 (2005)

    Article  MathSciNet  Google Scholar 

  7. Dorfling, M., Henning, M.A.: A note on power domination in grid graphs. Discrete Appl. Math. 154(6), 1023–1027 (2006)

    Article  MathSciNet  Google Scholar 

  8. Fan, N., Watson, J.-P.: Solving the connected dominating set problem and power dominating set problem by integer programming. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 371–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31770-5_33

    Chapter  MATH  Google Scholar 

  9. Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical Report MCS03-15 (2003)

    Google Scholar 

  10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965). https://projecteuclid.org:443/euclid.pjm/1102995572

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Gou, B.: Generalized integer linear programming formulation for optimal PMU placement. IEEE Trans. Power Syst. 23(3), 1099–1104 (2008)

    Article  Google Scholar 

  13. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

    Article  MathSciNet  Google Scholar 

  14. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

    Article  MathSciNet  Google Scholar 

  15. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529 (2002)

    Article  MathSciNet  Google Scholar 

  16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- \(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Thai, M.T., Wang, F., Yi, C., Wan, P., Du, D.: On greedy construction of connected dominating sets in wireless networks. Wirel. Commun. Mobile Comput. 5(8), 927–932 (2005)

    Article  Google Scholar 

  18. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM (JACM) 41(5), 960–981 (1994)

    Article  MathSciNet  Google Scholar 

  19. Milosevic, B., Begovic, M.: Nondominated sorting genetic algorithm for optimal phasor maesurement placement. IEEE Power Eng. Rev. 22(12), 61–61 (2002)

    Article  Google Scholar 

  20. Poirion, P., Toubaline, S., D’Ambrosio, C., Liberti, L.: The power edge set problem. Networks 68(2), 104–120 (2016)

    Article  MathSciNet  Google Scholar 

  21. Simonetti, L., Salles da Cunha, A., Lucena, A.: The minimum connected dominating set problem: formulation, valid inequalities and a branch-and-cut algorithm. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 162–169. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-8_21

    Chapter  Google Scholar 

  22. Thai, M.T., Du, D.Z.: Connected dominating sets in disk graphs with bidirectional links. IEEE Commun. Lett. 10(3), 138–140 (2006)

    Article  Google Scholar 

  23. Toubaline, S., D’Ambrosio, C., Liberti, L., Poirion, P., Schieber, B., Shachnai, H.: Complexity and inapproximability results for the power edge set problem. J. Comb. Optim. 35(3), 895–905 (2018)

    Article  MathSciNet  Google Scholar 

  24. Toubaline, S., Poirion, P.-L., D’Ambrosio, C., Liberti, L.: Observing the state of a smart grid using bilevel programming. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 364–376. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_27

    Chapter  Google Scholar 

  25. Yuill, W., Edwards, A., Chowdhury, S., Chowdhury, S.P.: Optimal PMU placement: a comprehensive literature review. In: 2011 IEEE Power and Energy Society General Meeting, July, pp. 1–8 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cazals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cazals, P., Darties, B., Chateau, A., Giroudeau, R., Weller, M. (2019). Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs. In: Colbourn, C., Grossi, R., Pisanti, N. (eds) Combinatorial Algorithms. IWOCA 2019. Lecture Notes in Computer Science(), vol 11638. Springer, Cham. https://doi.org/10.1007/978-3-030-25005-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25005-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25004-1

  • Online ISBN: 978-3-030-25005-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics