Abstract
The k-dimensional Weisfeiler-Leman algorithm (\(k\text {-}\mathrm {WL}\)) is a fruitful approach to the Graph Isomorphism problem. \(2\text {-}\mathrm {WL}\) corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. \(1\text {-}\mathrm {WL}\) is the classical color refinement routine. Indistinguishability by \(k\text {-}\mathrm {WL}\) is an equivalence relation on graphs that is of fundamental importance for isomorphism testing, descriptive complexity theory, and graph similarity testing which is also of some relevance in artificial intelligence. Focusing on dimensions \(k=1,2\), we investigate subgraph patterns whose counts are \(k\text {-}\mathrm {WL}\) invariant, and whose occurrence is \(k\text {-}\mathrm {WL}\) invariant. We achieve a complete description of all such patterns for dimension \(k=1\) and considerably extend the previous results known for \(k=2\).
O. Verbitsky was supported by DFG grant KO 1053/8–1. He is on leave from the IAPMM, Lviv, Ukraine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The result of [6] is actually stronger and applies even to distance-regular graphs.
References
Anderson, M., Dawar, A., Holm, B.: Solving linear programs without breaking abstractions. J. ACM 62(6), 48:1–48:26 (2015)
Arvind, V., Fuhlbrück, F., Köbler, J., Verbitsky, O.: On Weisfeiler-Leman invariance: subgraph counts and related graph properties. Technical report (2018). https://arxiv.org/abs/1811.04801
Atserias, A., Bulatov, A.A., Dawar, A.: Affine systems of equations and counting infinitary logic. Theor. Comput. Sci. 410(18), 1666–1683 (2009)
Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 684–697 (2016). https://doi.org/10.1145/2897518.2897542
Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput. 9(3), 628–635 (1980)
Beezer, R.A., Farrell, E.J.: The matching polynomial of a distance-regular graph. Int. J. Math. Math. Sci. 23(2), 89–97 (2000)
Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)
Bose, R.C., Mesner, D.M.: On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30, 21–38 (1959)
Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992). https://doi.org/10.1007/BF01305232
Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 210–223. ACM (2017)
Dawar, A.: A restricted second order logic for finite structures. Inf. Comput. 143(2), 154–174 (1998). https://doi.org/10.1006/inco.1998.2703
Dawar, A.: The nature and power of fixed-point logic with counting. SIGLOG News 2(1), 8–21 (2015)
Dawar, A., Severini, S., Zapata, O.: Pebble games and cospectral graphs. Electron. Notes Discrete Math. 61, 323–329 (2017)
Dell, H., Grohe, M., Rattan, G.: Lovász meets Weisfeiler and Leman. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). LIPIcs, vol. 107, pp. 40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
Diestel, R.: Graph Theory. Springer, New York (2000)
Farrell, E.J., Guo, J.M., Constantine, G.M.: On matching coefficients. Discrete Math. 89(2), 203–210 (1991)
Fürer, M.: On the power of combinatorial and spectral invariants. Linear Algebra Appl. 432(9), 2373–2380 (2010)
Fürer, M.: On the combinatorial power of the Weisfeiler-Lehman algorithm. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_22
Gao, C., Lafferty, J.: Testing for global network structure using smallsubgraph statistics. Technical report (2017). http://arxiv.org/abs/1710.00862
Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7
Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59(5), 27:1–27:64 (2012). https://doi.org/10.1145/2371656.2371662
Hasan, M.A., Dave, V.S.: Triangle counting in large networks: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(2), e1226 (2018)
Higman, D.: Finite permutation groups of rank 3. Math. Z. 86, 145–156 (1964)
Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5
Kreutzer, S., Schweikardt, N.: On Hanf-equivalence and the number of embeddings of small induced subgraphs. In: Joint Meeting of the 23-rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29-th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 60:1–60:10. ACM (2014)
Lovász, L.: Large Networks and Graph Limits, Colloquium Publications, vol. 60. American Mathematical Society (2012)
McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)
Morgan, H.L.: The generation of a unique machine description for chemical structures – a technique developed at chemical abstracts service. J. Chem. Doc. 5(2), 107–113 (1965)
Morris, C., Kersting, K., Mutzel, P.: Glocalized Weisfeiler-Lehman graph kernels: global-local feature maps of graphs. In: 2017 IEEE International Conference on Data Mining (ICDM 2017), pp. 327–336. IEEE Computer Society (2017)
Morris, C., et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. Technical report (2018). http://arxiv.org/abs/1810.02244
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Pyber, L.: Large connected strongly regular graphs are Hamiltonian. Technical report (2014). http://arxiv.org/abs/1409.3041
Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. A Rational Approach to the Theory of Graphs. Wiley, Hoboken (1997)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Ugander, J., Backstrom, L., Kleinberg, J.M.: Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: 22nd International World Wide Web Conference (WWW 2013), pp. 1307–1318. ACM (2013)
Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the algebra which appears therein. NTI Series, vol. 2, no. 9, pp. 12–16 (1968). English translation is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
Wormald, N.: Models of random regular graphs. In: Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Arvind, V., Fuhlbrück, F., Köbler, J., Verbitsky, O. (2019). On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-25027-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25026-3
Online ISBN: 978-3-030-25027-0
eBook Packages: Computer ScienceComputer Science (R0)