Skip to main content

Aggregation of Time-Series Data Under Differential Privacy

  • Conference paper
  • First Online:
Progress in Cryptology – LATINCRYPT 2017 (LATINCRYPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11368))

Abstract

In this work, we investigate the problem of statistical data analysis while preserving user privacy in the distributed and semi-honest setting. Particularly, we study properties of Private Stream Aggregation (PSA) schemes, first introduced by Shi et al. in 2011. A PSA scheme is a secure multiparty protocol for the aggregation of time-series data in a distributed network with a minimal communication cost. We show that in the non-adaptive query model, secure PSA schemes can be built upon any key-homomorphic weak pseudo-random function (PRF) and we provide a tighter security reduction. In contrast to the aforementioned work, this means that our security definition can be achieved in the standard model. In addition, we give two computationally efficient instantiations of this theoretic result. The security of the first instantiation comes from a key-homomorphic weak PRF based on the Decisional Diffie-Hellman problem and the security of the second one comes from a weak PRF based on the Decisional Learning with Errors problem. Moreover, due to the use of discrete Gaussian noise, the second construction inherently maintains a mechanism that preserves \((\epsilon ,\delta )\)-differential privacy in the final data-aggregate. A consequent feature of the constructed protocol is the use of the same noise for security and for differential privacy. As a result, we obtain an efficient prospective post-quantum PSA scheme for differentially private data analysis in the distributed model.

The research was supported by the DFG Research Training Group GRK 1817/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These mechanisms work in the centralised setting, where a trusted curator sees the full database in the clear and perturbs it properly.

  2. 2.

    If u is random, we consider instead of l after the choice of u in the execution of game \(\varvec{3}_l\) for all l.

  3. 3.

    One can assume that corrupted users will not add any noise to their data in order to help the analyst to compromise the privacy of the remaining users. For simplicity, we ignore this issue here.

  4. 4.

    Due to the use of a cryptographic protocol, the plaintexts have to be discrete. This is the reason why we use discrete distributions for generating noise.

  5. 5.

    For sake of comparability, we disregard here the condition for reproducibility of \(D(\nu )\).

References

  1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  2. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  3. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 21 (2016)

    Article  Google Scholar 

  4. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Proceedings of STOC 2008, pp. 609–618 (2008)

    Google Scholar 

  5. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_1

    Chapter  Google Scholar 

  6. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  7. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  8. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  9. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  10. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of STOC 2009, pp. 351–360 (2009)

    Google Scholar 

  11. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  12. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_10

    Chapter  MATH  Google Scholar 

  13. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of ICDE 2007, pp. 106–115 (2007)

    Google Scholar 

  14. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 5 (2009)

    Google Scholar 

  15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. In: Proceedings of Knowledge Discovery Data 2007 (2007)

    Google Scholar 

  16. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of FOCS 2007, pp. 94–103 (2007)

    Google Scholar 

  17. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_26

    Chapter  Google Scholar 

  18. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_8

    Chapter  Google Scholar 

  19. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23

    Chapter  Google Scholar 

  20. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. In: Proceedings of FOCS 1995, pp. 170–181 (1995)

    Google Scholar 

  21. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of STOC 2009, pp. 333–342 (2009)

    Google Scholar 

  22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  23. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings of PODS 1998, p. 188 (1998)

    Google Scholar 

  24. Shi, E., Hubert Chan, T.-H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings of NDSS 2011 (2011)

    Google Scholar 

  25. Thiruvenkatachar, V.R., Nanjundiah, T.S.: Inequalities concerning bessel functions and orthogonal polynomials. Proc. Indian Nat. Acad. Part A 33, 373–384 (1951)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipp Valovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valovich, F. (2019). Aggregation of Time-Series Data Under Differential Privacy. In: Lange, T., Dunkelman, O. (eds) Progress in Cryptology – LATINCRYPT 2017. LATINCRYPT 2017. Lecture Notes in Computer Science(), vol 11368. Springer, Cham. https://doi.org/10.1007/978-3-030-25283-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25283-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25282-3

  • Online ISBN: 978-3-030-25283-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics