Skip to main content

Engineering of Signaling Systems

  • Chapter
  • First Online:
Security and Quality in Cyber-Physical Systems Engineering

Abstract

Rail system products demand high standards on safety, security, and quality. To guarantee this, the design of such a system including its processes, utilized engineering tools, and produced data must be approved to meet the strict requirements. Engineering of signaling systems can be utilized as a use case to derive industries’ safety and quality challenges regarding engineering tools and data flows.

To understand these challenges in a comprehensive way, this chapter gives an overview about the general signaling business, its engineering processes, and its engineering tools including aspects of data flows and semantics. Based on the author’s findings in these subjects, requirements and respectively challenges are derived and summarized in the last section of this chapter. Each list entry is classified as quality and/or safety challenge. Furthermore, this chapter enables the link between industrial needs regarding engineering tool chains and current research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bigvand, P. G., & Fay, A. (2017). A workflow support system for the process and automation engineering of production plants. Toronto: IEEE ICIT.

    Book  Google Scholar 

  • Buder, J. (2017). Neues Planungsverfahren für Anlagen der Leit- und Siche-ungstechnik auf Basis durchgängiger elektronischer Datenhaltung. Dissertation, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden: Technische Universität Dresden.

    Google Scholar 

  • DB Station&Service AG & DB Netz AG. (2018). BIM-Vorgaben, BIM-Methodik, Digitaltes Planen und Bauen. Berlin.

    Google Scholar 

  • DIN EN 50128. (2012). Railway applications – Communication, signaling and processing systems – Software for railway control and protection systems. German version EN 50128:2011. Beuth: Berlin.

    Google Scholar 

  • DIN EN 81346-1. (2013). Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 1: Basic rules (IEC 81346-1:2009). German version EN 81346-1:2009. Beuth: Berlin.

    Google Scholar 

  • DIN EN ISO 16739:2017-04. (2017). Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries (ISO 16739:2013); English version EN ISO 16739:2016.

    Google Scholar 

  • Duggan, P., & Boraelv, A. (2015). Mathematical proof in an automated environment for railway interlockings. Technical paper in IRSE presidential program presented at IRSE NEWS 217, London.

    Google Scholar 

  • Falkner, A., & Schreiner, H. (2014). Configuration and reconfiguration in industry. In A. Felfernig, L. Hotz, C. Bagley, & J. Tiihonen (Eds.), Knowledge-based configuration – From research to business cases (pp. 199–210). Waltham, MA: Morgan Kaufmann. (chapter 16).

    Chapter  Google Scholar 

  • Haselboeck, A., & Schenner, G. (2014). S’UPREME. In A. Felfernig, L. Hotz, C. Bagley, & J. Tiihonen (Eds.), Knowledge-based configuration – From research to business cases (pp. 263–269). Waltham, MA: Morgan Kaufmann. (chapter 22).

    Chapter  Google Scholar 

  • Holm, T., Horn, S., Lehmann, O., & Seidel, H. (2012). Reference model based design of tool landscapes for rail infrastructure engineering. In B. Katalinic (Ed.), DAAAM international scientific book 2012 (11th ed., pp. 267–276). DAAAM International Vienna.

    Google Scholar 

  • IEC 62443-3-3. (2013). Industrial communication networks – Network and system security – Part 3-3: System security requirements and security levels, IEC2013.

    Google Scholar 

  • Jeans, J. S. (1875). Jubilee memorial of the railway system: A history of the Stockton and Darlington railway and a record of results. Michigan: Longmans, Green, and Company.

    Google Scholar 

  • Kuny, T. (1997). The digital dark ages? Challenges in the preservation of electronic information. In Paper presented at the 63rd International Federation of Library Associations and Institutions (IFLA) council and general conference. Copenhagen, 31 August–5 September 1997. Retrieved December 17, 2018, from https://archive.ifla.org/IV/ifla63/63kuny1.pdf.

  • Linder, C., & Grimm, M. (2012). Datenmodellanalyse zum Austausch von Projektierungsdaten für Stellwerkssysteme in INESS. Journal of Signal and Draht, 104(9), 16–21.

    Google Scholar 

  • Maschek, U. (2018). Sicherung des Schienenverkehrs. Grundlagen und Planung der Leit- und Sicherungstechnik (4. überarbeitete und erweiterte Auflage). Wiesbaden: Springer.

    Google Scholar 

  • Nash, A., Huerlimann, D., Schuette, J., & Krauss, V. P. (2004). RailML – A standard interface for railroad applications. In COMPRAIL 2004, Dresden.

    Google Scholar 

  • Odgen, C. K., & Richards, I. A. (1923). The meaning of meaning. London: Kegan Paul, Trench, Trubner.

    Google Scholar 

  • Pachl, J. (2018). Railway operation and control (4th ed.). Mountlake Terrace, WA: VTD Rail.

    Google Scholar 

  • Seidel, H., Mühlhause, M., Jaeger, T., Fay, A., & Diedrich, C. (2017). Automatic workflow generation in engineering processes. Automatisierungstechnik, 65(1), 37–48. https://doi.org/10.1515/auto-2016-0096.

  • Sunindyo, W., Moser, T., Winkler, D., & Mordinyi, R. (2013). Project progress and risk monitoring in automation systems engineering. In D. Winkler, S. Biffl, & J. Bergsmann (Eds.), Software quality – Increasing value in software and systems development (pp. 30–54). Berlin: Springer.

    Chapter  Google Scholar 

  • Theeg, G., & Vlasenko, S. (2017). Railway signalling& interlocking: International compendium (2nd revised ed.). Bingen: PMC Media House.

    Google Scholar 

  • TÜV-SÜD. (2017). The future of rail automation. Retrieved October 25, 2018 from https://www.tuev-sued.de/rail-en/the-future-of-rail-automation.

  • Verein Deutscher Ingenieure, VDI 3695, Part 3. (2010). Engineering of industrial plants; Evaluation and optimization; subject methods. Beuth: Berlin.

    Google Scholar 

  • ZVEI – Zentralverband Elektronik- und Elektronikindustrie e.V. (2010). Leitfaden Life-Cycle-Management für Produkte und System der Automation. Frankfurt am Main.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J., Hell, K., Westphal, R., Mühlhause, M. (2019). Engineering of Signaling Systems. In: Biffl, S., Eckhart, M., Lüder, A., Weippl, E. (eds) Security and Quality in Cyber-Physical Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-25312-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25312-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25311-0

  • Online ISBN: 978-3-030-25312-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics