Abstract
In order to deal with the increasing complexity of modern systems such as in software-intensive environments, models are used in many research fields as abstract descriptions of reality. On the one side, a model serves as an abstraction for a specific purpose, as a kind of “blueprint” of a system, describing a system’s structure and desired behavior in the design phase. On the other side, there are so-called runtime models providing real abstractions of systems during runtime, for example, to monitor runtime behavior. Today, we recognize a discrepancy between the early snapshots and their real-world correspondents. To overcome this discrepancy, we propose to fully integrate models from the very beginning within the life cycle of a system. As a first step in this direction, we introduce a data-based model-driven engineering approach where we provide a unifying framework to combine downstream information from the model-driven engineering process with upstream information gathered during a system’s operation at runtime, by explicitly considering also a timing component. We present this temporal model framework step-by-step by selected use cases with increasing complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anagnostopoulos, I., Zeadally, S., & Exposito, E. (2016). Handling big data: Research challenges and future directions. The Journal of Supercomputing, 72(4), 1494–1516.
Artner, J., Mazak, A., & Wimmer, M. (2017). Towards stochastic performance models for web 2.0 applications. In J. Cabot, R. D. Virgilio, & R. Torlone (Eds.), Proceedings of the 17th International Conference on Web Engineering (ICWE 2017). Lecture Notes in Computer Science (Vol. 10360, pp. 360–369). Berlin: Springer.
Basciani, F., Rocco, J. D., Ruscio, D. D., Salle, A. D., Iovino, L., & Pierantonio, A. (2014). MDEForge: An extensible web-based modeling platform. In Proceedings of the 2nd International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE) Co-located with the 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS) (pp. 66–75). https://CEUR-WS.org
Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., & Launay, D. (2014). Neo4EMF, a scalable persistence layer for EMF models. In J. Cabot & J. Rubin, (Eds.), Proceedings of the 10th European Conference on Modelling Foundations and Applications, ECMFA 2014. Lecture Notes in Computer Science (Vol. 8569, pp. 230–241). Berlin: Springer.
Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M., et al. (2018). A systematic review of cloud modeling languages. ACM Computing Surveys, 51(1), 22.
Bill, R., Mazak, A., Wimmer, M., & Vogel-Heuser, B. (2017a). On the need for temporal model repositories. In M. Seidl & S. Zschaler (Eds.), 2017 Collocated Workshops on Software Technologies: Applications and Foundations, STAF, Revised Selected Papers. Lecture Notes in Computer Science (Vol. 10748, pp. 136–145). Berlin: Springer.
Bill, R., Neubauer, P., & Wimmer, M. (2017b). Virtual textual model composition for supporting versioning and aspect-orientation. In Proceedings of the 10th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2017 (pp. 67–78). New York, NY: ACM.
Bishop, C. M. (2007). Pattern recognition and machine learning. Information science and statistics (5th ed.). Berlin: Springer.
Blair, G., Bencomo, N., & France, R. (2009). Models@ run.time. Computer, 42(10), 22–27.
Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in practice. Synthesis lectures on software engineering (2nd ed.). Morgan & Claypool Publishers.
Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M., Kargl, H., & Langer, P. (2010). Adaptable model versioning in action. In Proceedings of the German Modellierung Conference (pp. 221–236). GI.
Bülow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., et al. (2013). Monitoring of business processes with complex event processing. In N. Lohmann, M. Song, & P. Wohed (Eds.), 2013 International Workshops on Business Process Management Workshops - BPM, Revised Papers. Lecture Notes in Business Information Processing (Vol. 171, pp. 277–290). Berlin: Springer.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 15:1–15:58.
Clasen, C., Didonet Del Fabro, M., & Tisi, M. (2012). Transforming very large models in the cloud: A research roadmap. In Proceedings of the 1st International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE) Co-located with the 8th European Conference on Modelling Foundations and Applications (ECMFA) (pp. 1–10). HAL.
Cuadrado, J. S., & de Lara, J. (2013). Streaming model transformations: Scenarios, challenges and initial solutions. In Proceedings of the 6th International Conference on Theory and Practice of Model Transformations (ICMT) (pp. 1–16). Berlin: Springer.
Cugola, G., & Margara, A. (2012). Processing flows of information: From data stream to complex event processing. ACM Computing Surveys, 44(3), 15:1–15:62.
Daniel, G., Sunyé, G., Benelallam, A., & Tisi, M. (2014). Improving memory efficiency for processing large-scale models. In Proceedings of the 2nd Workshop on Scalability in Model Driven Engineering (BigMDE) (pp. 31–39). https://CEUR-WS.org.
Dávid, I., Ráth, I., & Varró, D. (2018). Foundations for streaming model transformations by complex event processing. Software and Systems Modeling, 17(1), 135–162.
Davoudian, A., Chen, L., & Liu, M. (2018). A survey on NoSQL stores. ACM Computing Surveys, 51(2), 40:1–40:43.
Deak, L., Mezei, G., Vajk, T., & Fekete, K. (2013). Graph partitioning algorithm for model transformation frameworks. In Proceedings of the International Conference on Computer as a Tool (EUROCON) (pp. 475–481). Piscataway, NJ: IEEE.
Demchenko, Y., de Laat, C., & Membrey, P. (2014). Defining architecture components of the big data ecosystem. In 2014 International Conference on Collaboration Technologies and Systems, CTS (pp. 104–112). Piscataway, NJ: IEEE.
Domingos, P. M., & Hulten, G. (2001). Catching up with the data: Research issues in mining data streams. In Proceedings of the 6th International Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD). https://cs.cornell.edu.
Dumas, M., van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2005). Process-aware information systems: Bridging people and software through process technology. London: Wiley.
Dunning, T. (2014). Practical machine learning: A new look at anomaly detection (1st ed.) . Sebastopol, CA: O’Reilly Media.
Espinazo Pagan, J., & Garcia Molina, J. (2014). Querying large models efficiently. Information and Software Technology, 56(6), 586–622.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining (pp. 1–34). Menlo Park, CA: AAAI.
Gómez, A., Tisi, M., Sunyé, G., & Cabot, J. (2015). Map-based transparent persistence for very large models. In Proceedings of the 18th International Conference on Fundamental Approaches to Software Engineering (FASE) (pp. 19–34). Berlin: Springer.
Hafner, C., Medetz, M., & Wapp, M. (2018). Enterprise Architect Sequence Miner. Technical report, TU Wien.
Hallé, S., & Varvaressos, S. (2014). A formalization of complex event stream processing. In M. Reichert, S. Rinderle-Ma, & G. Grossmann (Eds.), 18th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2014 (pp. 2–11). Washington, DC: IEEE Computer Society.
Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 15(1), 55–86.
Hartmann, T., Fouquet, F., Nain, G., Morin, B., Klein, J., Barais, O., et al. (2014). A native versioning concept to support historized models at runtime. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, & E. Insfrán (Eds.), Proceedings of the 17th International Conference on Model-Driven Engineering Languages and Systems, MODELS 2014. Lecture Notes in Computer Science (Vol. 8767, pp. 252–268). Berlin: Springer.
Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., & Traon, Y. L. (2015). Stream my models: Reactive peer-to-peer distributed models@run.time. In Proceedings of the 18th International Conference on Model Driven Engineering Languages and Systems (MoDELS). ACM/IEEE.
Kadam, S., Maltsev, A., Patsuk-Bösch, P. (2017). Model Profiling. Technical report, TU Wien.
Khalifa, S., Elshater, Y., Sundaravarathan, K., Bhat, A., Martin, P., Imam, F., et al. (2016). The six pillars for building big data analytics ecosystems. ACM Computing Surveys, 49(2), 33:1–33:36.
Khare, S., An, K., Gokhale, A. S., Tambe, S., & Meena, A. (2015). Reactive stream processing for data-centric publish/subscribe. In Proceedings of the 9th International Conference on Distributed Event-Based Systems (DEBS), (pp. 234–245). New York, NY: ACM.
Koegel, M., & Helming, J. (2010). EMFStore: A model repository for EMF models. In J. Kramer, J. Bishop, P. T. Devanbu, & S. Uchitel (Eds.), Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010 (Vol. 2, pp. 307–308). New York, NY: ACM.
Kolovos, D. S., Rose, L. M., Matragkas, N., Paige, R. F., Guerra, E., Cuadrado, J. S., et al. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering (BigMDE) (pp. 2:1–2:10). New York, NY: ACM.
Laney, D. (2001). 3-D Data Management: Controlling Data Volume, Velocity, and Variety. Technical report, META Group.
Luckham, D. C. (2001). The power of events: An introduction to complex event processing in distributed enterprise systems. Reading, MA: Addison-Wesley.
Mannhardt, F., de Leoni, M., Reijers, H. A., van der Aalst, W. M., & Toussaint, P. J. (2018). Guided process discovery—a pattern-based approach. Information Systems, 76, 1–18.
Mazak, A., Lüder, A., Wolny, S., Wimmer, M., Winkler, D., Kirchheim, K., et al. (2018). Model-based generation of run-time data collection systems exploiting automationml. Automatisierungstechnik, 66(10), 819–833.
Mazak, A., & Wimmer, M. (2016a). On marrying model-driven engineering and process mining: A case study in execution-based model profiling. In P. Ceravolo, C. Guetl, & S. Rinderle-Ma (Eds.), Proceedings of the 6th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2016), CEUR Workshop Proceedings (Vol. 1757, pp. 78–88). https://CEUR-WS.org
Mazak, A., & Wimmer, M. (2016b). Towards liquid models: An evolutionary modeling approach. In 18th IEEE Conference on Business Informatics, CBI 2016, E. Kornyshova, G. Poels, C. Huemer, I. Wattiau, F. Matthes, & J. L. C. Sanz (Eds.) (pp. 104–112). Piscataway, NJ: IEEE.
Mazak, A., & Wimmer, M. (2017). Sequence pattern mining: Automatisches erkennen und auswerten von interaktionsmustern zwischen technischen assets basierend auf sysml-sequenz-diagrammen. In Tag des Systems Engineering 2017, TdSE 2017 (pp. 145–156). Munich: Carl Hanser Verlag GmbH. KG.
Mazak, A., M. Wimmer, & P. Patsuk-Boesch (2017). Reverse engineering of production processes based on Markov chains. In 13th IEEE Conference on Automation Science and Engineering, CASE 2017 (pp. 680–686). Piscataway, NJ: IEEE.
Mazak, A., Wimmer, M., & Patsuk-Bösch, P. (2016). Execution-based model profiling. In P. Ceravolo, C. Guetl, & S. Rinderle-Ma (Eds.), Data-Driven Process Discovery and Analysis - 6th IFIP WG 2.6 International Symposium, SIMPDA 2016, Revised Selected Papers. Lecture Notes in Business Information Processing (Vol. 307, pp. 37–52). Berlin: Springer.
Pedersen, T. B. (2017). Managing big multidimensional data: A journey from acquisition to prescriptive analytics. In J. Bernardino, C. Quix, & J. Filipe (Eds.), Proceedings of the 6th International Conference on Data Science, Technology and Applications, DATA 2017 (p. 5). SciTePress.
Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553–572.
Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. (2016). Mining local process models. Journal of Innovation in Digital Ecosystem, 3(2), 183–196.
van der Aalst, W. M. P. (2012). Process mining. Communications of the ACM, 55(8), 76–83.
van der Aalst, W. M. P. (2018). Process discovery from event data: Relating models and logs through abstractions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(3), e1244.
van der Aalst, W. M. P., Adriansyah, A., de Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., et al. (2011). Process mining manifesto. In Proceedings of the Business Process Management Workshops (BPM) (pp. 169–194). Berlin: Springer.
van der Aalst, W. M. P., Weijters, T., & Maruster, L. (2004). Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128–1142.
van Dongen, B. F., van der Aalst, W. M. P. (2005). A meta model for process mining data. In Proceedings of the International Workshop on Enterprise Modelling and Ontologies for Interoperability (EMOI) Co-located with the 17th Conference on Advanced Information Systems Engineering (CAiSE). https://CEUR-WS.org.
Vlissides, J., Helm, R., Johnson, R., & Gamma, E. (1995). Design patterns: Elements of reusable object-oriented software. Reading, MA: Addison-Wesley.
Wimmer, M., Garrigós, I., & Firmenich, S. (2017). Towards automatic generation of web-based modeling editors. In J. Cabot, R. De Virgilio, & R. Torlone (Eds.), Proceedings of the 17th International Conference on Web Engineering (ICWE 2017). Lecture Notes in Computer Science (Vol. 10360, pp. 446–454). Berlin: Springer.
Wolny, S., Mazak, A., Carpella, C., Geist, V., & Wimmer, M. (2019). Thirteen years of SysML: A systematic mapping study. Software and System Modeling. https://10.1007/s10270-019-00735-y
Wolny, S., Mazak, A., Konlechner, R., & Wimmer, M. (2017). Towards continuous behavior mining. In P. Ceravolo, M. van Keulen, & K. Stoffel (Eds.), Proceedings of the 7th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2017). CEURWorkshop Proceedings (Vol. 2016, pp. 149–150). https://CEUR-WS.org.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231–1247.
Acknowledgements
This work has been supported by the Austrian Federal Ministry for Digital and Economic Affairs; by the National Foundation for Research, Technology and Development; and by the FWF in the Project TETRABox under the grant number P28519-N31.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mazak, A., Wolny, S., Wimmer, M. (2019). On the Need for Data-Based Model-Driven Engineering. In: Biffl, S., Eckhart, M., Lüder, A., Weippl, E. (eds) Security and Quality in Cyber-Physical Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-25312-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-25312-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25311-0
Online ISBN: 978-3-030-25312-7
eBook Packages: Computer ScienceComputer Science (R0)