Abstract
Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, 231–238 (2015)
Godaba, H., Li, J., Wang, Y., Zhu, J.: A soft jellyfish robot driven by a dielectric elastomer actuator. IEEE Robot. Autom. Lett. 1, 624–631 (2016)
Behl, M., Kratz, K., Noechel, U., Sauter, T., Lendlein, A.: Temperature-memory polymer actuators. Proc. Natl. Acad. Sci. 110, 12555–12559 (2013)
Liu, Z., Calvert, P.: Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12, 288–291 (2000)
Althoefer, K.: Antagonistic actuation and stiffness control in soft inflatable robots. Nat. Rev. Mater. 3, 76 (2018)
Shepherd, R.F., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)
Marchese, A.D., Katzschmann, R.K., Rus, D.: A recipe for soft fluidic elastomer robots. Soft Robot. 2, 7–25 (2015)
Niiyama, R., Rus, D., Kim, S.: Pouch motors: printable/inflatable soft actuators for robotics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6332–6337. IEEE (2014)
Liang, X., Cheong, H., Sun, Y., Guo, J., Chui, C.K., Yeow, C.-H.: Design, characterization, and implementation of a two-DOF fabric-based soft robotic arm. IEEE Robot. Autom. Lett. 3, 2702–2709 (2018)
Li, J., Godaba, H., Zhang, Z.Q., Foo, C.C., Zhu, J.: A soft active origami robot. Extrem. Mech. Lett. 24, 30–37 (2018)
Abrar, T., Putzu, F., Althoefer, K.: Soft wearable glove for tele-rehabilitation therapy of clenched hand/fingers patients. In: Workshop on Computer/Robot Assisted Surgery, London (2018)
Hawkes, E.W., Blumenschein, L.H., Greer, J.D., Okamura, A.M.: A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028 (2017)
Blumenschein, L.H., Gan, L.T., Fan, J.A., Okamura, A.M., Hawkes, E.W.: A tip-extending soft robot enables reconfigurable and deployable antennas. IEEE Robot. Autom. Lett. 3, 949–956 (2018)
Naclerio, N.D., Hubicki, C.M., Aydin, Y.O., Goldman, D.I., Hawkes, E.W.: Soft robotic burrowing device with tip-extension and granular fluidization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5918–5923. IEEE (2018)
Putzu, F., Abrar, T., Althoefer, K.: Plant-inspired soft pneumatic eversion robot. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1327–1332. IEEE (2018)
Althoefer, K.A.: Neuro-fuzzy motion planning for robotic manipulators (1997)
Lockhart, J.A.: An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965)
Blumenschein, L.H., Okamura, A.M., Hawkes, E.W.: Modeling of bioinspired apical extension in a soft robot. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 522–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_45
Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability (1961)
Jordan, J.L., Casem, D.T., Bradley, J.M., Dwivedi, A.K., Brown, E.N., Jordan, C.W.: Mechanical properties of low density polyethylene. J. Dyn. Behav. Mater. 2, 411–420 (2016)
Timoshenko, S.: Strength of Materials Part 1. D. Van Nostrand Co., Inc. (1940)
Le Van, A., Wielgosz, C.: Bending and buckling of inflatable beams: some new theoretical results. Thin-walled Struct. 43, 1166–1187 (2005)
Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)
Comer, R.L., Levy, S.: Deflections of an inflated circular-cylindrical cantilever beam. AIAA J. 1, 1652–1655 (1963)
Acknowledgements
This work was supported in part by the EPSRC National Centre for Nuclear Robotics project (EP/R02572X/1), and the Innovate UK project WormBot (104059).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Godaba, H., Putzu, F., Abrar, T., Konstantinova, J., Althoefer, K. (2019). Payload Capabilities and Operational Limits of Eversion Robots. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-25332-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25331-8
Online ISBN: 978-3-030-25332-5
eBook Packages: Computer ScienceComputer Science (R0)