Skip to main content

The Interplay of Artificial and Human Intelligence in Radiology – Exploring Socio-Technical System Dynamics

  • Conference paper
  • First Online:
Human Interaction and Emerging Technologies (IHIET 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1018))

Abstract

Workplaces with increasing interaction between individual and artificial intelligence (AI) have to face socio-technical system dynamics resulting from the interplay between technology and human behavior. The paper specifies the key characteristics and moderating factors for these dynamics for the use case of radiology. Radiology gives a good example because of its central role in the initiation of integrated clinical care processes. The structurational model of technology with its recent outlines on the materiality of technology serves as theoretical framework. It specifies the system dynamics between technology, human agents and institutional properties. Closing remarks are related to implementation challenges aiming at better understanding drivers and inhibitors in socio-technical system change.

M. Dewey—Heisenberg Professor of Radiology at the German Research Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNSCEAR 2008 Report: Sources and effects of ionizing radiation, Volume I. http://www.unscear.org/unscear/en/publications/2008_1.html

  2. Dewey, M.: The future of radiology: adding value to clinical care. Lancet 392(10146), 472–473 (2018)

    Article  Google Scholar 

  3. Forsting, M.: Artificial intelligence with radiology as a trailblazer for super-diagnostics: an essay. RöFo 191(1), 73–78 (2019)

    Google Scholar 

  4. Boland, G.W., Duszak Jr., R., McGinty, G., Allen Jr., B.: Delivery of appropriateness, quality, safety, efficiency and patient satisfaction. J. Am. Coll. Radiol. 11(1), 7–11 (2014)

    Article  Google Scholar 

  5. Genders, T.S., Steyerberg, E.W., Hunink, M.G., Nieman, K., Galema, T.W., Mollet, N.R., Laule, M.: Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ 344, e3485 (2012)

    Article  Google Scholar 

  6. Brink, J.A., Arenson, R.L., Grist, T.M., Lewin, J.S., Enzmann, D.: Bits and bytes: the future of radiology lies in informatics and information technology. Eur. Radiol. 27(9), 3647–3651 (2017)

    Article  Google Scholar 

  7. Pinto Dos Santos, D., Scheibl, S., Arnhold, G., Maehringer-Kunz, A., Duber, C., Mildenberger, P., Kloeckner, R.: A proof of concept for epidemiological research using structured reporting with pulmonary embolism as a use case. Br. J. Radiol. 091 (2018)

    Google Scholar 

  8. Cobb, P.: Learning from distributed theories of intelligence. MCA 5(3), 187–204 (1998)

    Google Scholar 

  9. Fischer, G.: Communities of interest: learning through the interaction of multiple knowledge systems. In: IRIS’24, Ulvik, Norway, pp. 1–14. Department of Information Science, Bergen (2001)

    Google Scholar 

  10. Wilkens, U., Artinger, F.: Design components of clinical work environments with computerized decision support systems. In: Karwowski, W., Ahram, T. (eds.) Intelligent Systems Integration 2019. IHSI Conference Proceedings, pp. 137–141. Springer, Wiesbaden (2019)

    Google Scholar 

  11. Wilkens, U.: Distributed intelligence in the workplace – a matter of hr policy. Full paper Accepted for International Interdisciplinary Conference on HRM, Gothenburg, April 2019

    Google Scholar 

  12. Davis, F.D.: User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. Int. J. Man. Mach. 38(3), 475–487 (1993)

    Article  Google Scholar 

  13. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46(2), 186–204 (2000)

    Article  Google Scholar 

  14. Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. UAIS 14(1), 81–95 (2015)

    Article  Google Scholar 

  15. Karsh, B.T.: Beyond usability: designing effective technology implementation systems to promote patient safety. Qual. Saf. Health Care 13(5), 388–394 (2004)

    Article  Google Scholar 

  16. Orlikowski, W.J.: The duality of technology: rethinking the concepts of technology in organizations. Organ. Sci. 3(3), 398–427 (1992)

    Article  Google Scholar 

  17. Leonardi, P.M., Barley, S.R.: What’s under construction here? Social action, materiality, and power in constructivist studies of technology and organizing. Acad. Manag. Ann. 4(1), 1–51 (2010)

    Article  Google Scholar 

  18. Orlikowski, W.J.: Managing and designing: attending to reflexiveness and enactment. In: Boland Jr., R.J., Collopy, F. (eds.) Managing as Designing, pp. 90–95. Stanford University Press, Stanford (2004)

    Google Scholar 

  19. Maskell, G.: The practice of radiology needs to change. BMJ 358, j4102 (2017)

    Article  Google Scholar 

  20. Rimmer, A.: Five minutes with … Nicola Strickland. BMJ 359, j4675 (2017)

    Article  Google Scholar 

  21. Chen, D., Vallespir, B., Daclin, M.: An approach for enterprise interoperability measurement. MoDISE-EUS 341, 1–12 (2008)

    Google Scholar 

  22. Fischer, G.: Shared knowledge in cooperative problem-solving systems – integrating adaptive and adaptable components. In: Schneider-Hufschmidt, M., Kuehme, T., Malinowski, U. (eds.) Adaptive User Interfaces – Principles and Practice, pp. 49–68. Elsevier Science Publishers, Amsterdam (1993)

    Google Scholar 

  23. Wilkens, U., Sprafke, N.: Micro-variables of dynamic capabilities and how they come into effect – exploring firm-specificity and cross-firm commonalities. Management International Accepted (2019)

    Google Scholar 

  24. Süße, T., Wilkens, U., Hohagen, S., Artinger, F.M.: Digital competence of stakeholders in product-service systems (PSS): conceptualization and empirical exploration. Procedia CIRP 73, 197–202 (2018)

    Article  Google Scholar 

  25. Argyris, C.: A life full of learning. Organ. Stud. 24(7), 1178–1192 (2003)

    Article  Google Scholar 

  26. Ethics approval EA1/297/16 Charité - Universitätsmedizin Berlin

    Google Scholar 

  27. Fischer, G.: Identifying and exploring design trade-offs in human-centered design. In: Proceedings of the Conference on AVI, Article no. 22 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Wilkens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilkens, U., Dewey, M. (2020). The Interplay of Artificial and Human Intelligence in Radiology – Exploring Socio-Technical System Dynamics. In: Ahram, T., Taiar, R., Colson, S., Choplin, A. (eds) Human Interaction and Emerging Technologies. IHIET 2019. Advances in Intelligent Systems and Computing, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-030-25629-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25629-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25628-9

  • Online ISBN: 978-3-030-25629-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics