Skip to main content

A Probabilistic Cellular Automata Rule Forming Domino Patterns

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11657))

Included in the following conference series:

Abstract

The objective in this study is to form a domino pattern by Cellular Automata (CA). In a previous work such patterns were formed by CA agents, which were trained with high effort by the aid of Genetic Algorithm. Now two probabilistic CA rules are designed in a methodical way that can perform this task very reliably even for rectangular fields. The first rule evolves stable sub–optimal pattern. The second rule maximizes the overlap between dominoes thereby maximizing the number of dominoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkäuser (2005)

    Google Scholar 

  3. Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in complex matter. Complex Syst. 20(1), 67–91 (2011)

    MathSciNet  Google Scholar 

  4. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)

    Article  MathSciNet  Google Scholar 

  5. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai, A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Sytems IV, pp. 275–282. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73849-7_31

    Chapter  Google Scholar 

  6. Yamins, D., Nagpal, R.: Automated Global-to-Local programming in 1-D spatial multi-agent systems. In: Proceedings 7th International Conference on AAMAS, pp. 615–622 (2008)

    Google Scholar 

  7. Tomassini, M., Venzi, M.: Evolution of asynchronous cellular automata for the density task. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L., (eds.): Parallel Problem Solving from Nature – PPSN VIIPPSN 2002. LNCS, vol. 2439, pp. 934–943. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_90

    Chapter  Google Scholar 

  8. Birgin, E.G., Lobato, R.D., Morabito, R.: An effective recursive partitioning approach for the packing of identical rectangles in a rectangle. J. Oper. Research Soc. 61, 303–320 (2010)

    Article  Google Scholar 

  9. Hoffmann, R.: How agents can form a specific pattern. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7_70

    Chapter  Google Scholar 

  10. Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys. Pol. B Proc. Suppl. 9(1), 63–75 (2016)

    Article  Google Scholar 

  11. Hoffmann, R., Désérable, D.: Line patterns formed by cellular automata agents. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 424–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_42

    Chapter  Google Scholar 

  12. Hoffmann, R., Désérable, D.: Generating maximal domino patterns by cellular automata agents. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 18–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_2

    Chapter  Google Scholar 

  13. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel Substitution Algorithm, Theory and Application. World Scientific, Singapore (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, R., Désérable, D., Seredyński, F. (2019). A Probabilistic Cellular Automata Rule Forming Domino Patterns. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2019. Lecture Notes in Computer Science(), vol 11657. Springer, Cham. https://doi.org/10.1007/978-3-030-25636-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25636-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25635-7

  • Online ISBN: 978-3-030-25636-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics