Abstract
Attention deficit-hyperactivity disorder is considered a mental disease that affects a significant number of the world’s youth population. Brain-computer interfaces have been used to study and treat this mental disease. In this paper, we present the current state of unmanned aerial vehicles controlled by mental commands. We hope this study can be useful to guide future research focused to develop brain-computer interfaces able of controlling unmanned aerial vehicles for therapeutic purposes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shidhaye R, Lund C, Chisholm D (2015) Closing the treatment gap for mental, neurological and substance use disorders by strengthening existing health care platforms: strategies for delivery and integration of evidence-based interventions. Int J Ment Health Syst 9(1):1–11. https://doi.org/10.1186/s13033-015-0031-9
Patel V, Xiao S, Chen H, Hanna F, Jotheeswaran A, Luo D, Parikh R, Sharma E, Usmani S, Yu Y (2016) The magnitude of and health system responses to the mental health treatment gap in adults in India and China. Lancet 388(10063):3074–3084. https://doi.org/10.1016/S0140-6736(16)00160-4
Kazdin AE (2017) Addressing the treatment gap: a key challenge for extending evidence-based psychosocial interventions. Behav Res Ther 88:7–18. https://doi.org/10.1016/j.brat.2016.06.004
Spruijt-Metz D, Hekler E, Saranummi N, Intille S, Korhonen I, Nilsen W, Rivera DE, Spring B, Michie S, Asch DA (2015) Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Transl Behav Med 5(3):335–346. https://doi.org/10.1007/s13142-015-0324-1
Silva BM, Rodrigues JJ, de la Torre Díez I, López-Coronado M, Saleem K (2015) Mobile-health: a review of current state in 2015. J Biomed Inform 56:265–272. https://doi.org/10.1016/j.jbi.2015.06.003
Naslund JA, Aschbrenner KA, Barre LK, Bartels SJ (2015) Feasibility of popular m-health technologies for activity tracking among individuals with serious mental illness. Telemed E-Health 21(3):213–216. https://doi.org/10.1089/tmj.2014.0105
Formolo D, Van Ments L, Treur J (2017) A computational model to simulate development and recovery of traumatised patients. Biol Inspired Cogn Arch 21:26–36. https://doi.org/10.1016/j.bica.2017.07.002
Yu Y, He D, Hua W, Li S, Qi Y, Wang Y, Pan G (2012) Flying-Buddy2: a brain-controlled assistant for the handicapped. In: UbiComp. ACM, pp 669–670
Scott JE, Scott CH (2018) Models for drone delivery of medications and other healthcare items. Int J Healthc Inf Syst Inform (IJHISI) 13(3):20–34. https://doi.org/10.4018/IJHISI.2018070102
Van de Voorde P, Gautama S, Momont A, Ionescu C, De Paepe P, Fraeyman N (2017) The drone ambulance [A-UAS]: golden bullet or just a blank? Resuscitation 116:46–48. https://doi.org/10.1016/j.resuscitation.2017.04.037
Polanczyk G, De Lima MS, Horta BL, Biederman J, Rohde LA (2007) The world-wide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164:942–948
Hammond DC (2011) What is neurofeedback: an update. J Neurother 15(4):305–336. https://doi.org/10.1080/10874208.2011.623090
Bearden TS, Cassisi JE, Pineda M (2003) Neurofeedback training for a patient with thalamic and cortical infarctions. Appl Psychophysiol Biofeedback 28(3):241–253. https://doi.org/10.1023/A:1024689315563
Tinius TP, Tinius KA (2000) Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. J Neurother 4(2):27–44. https://doi.org/10.1300/J184v04n02_05
Fernández T, Bosch-Bayard J, Harmony T, Caballero MI, Díaz-Comas L, Galán L, Ricardo-Garcell J, Aubert E, Otero-Ojeda G (2016) Neurofeedback in learning disabled children: visual versus auditory reinforcement. Appl Psychophysiol Biofeedback 41(1):27–37. https://doi.org/10.1007/s10484-015-9309-6
Van Doren J, Arns M, Heinrich H, Vollebregt MA, Strehl U, Loo SK (2018) Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 1–13. https://doi.org/10.1007/s00787-018-1121-4
Johnstone SJ, Roodenrys SJ, Johnson K, Bonfield R, Bennett SJ (2017) Game-based combined cognitive and neurofeedback training using focus pocus reduces symptom severity in children with diagnosed AD/HD and subclinical AD/HD. Int J Psychophysiol 116:32–44. https://doi.org/10.1016/j.ijpsycho.2017.02.015
Silvagni M, Tonoli A, Zenerino E, Chiaberge M (2017) Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomat Nat Hazards Risk 8:18–33. https://doi.org/10.1080/19475705.2016.1238852
Choi I, Rhiu I, Lee Y, Yun MH, Nam CS (2017) A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. PLoS ONE 12:e0176674. https://doi.org/10.1371/journal.pone.0176674
Kosmyna N, Tarpin-Bernard F, Rivet B (2015) Towards brain computer interfaces for recreational activities: piloting a drone. In: Human-computer interaction. Springer, pp 506–522. https://doi.org/10.1007/978-3-319-22701-6_37
Shi T, Wang H, Zhang C (2015) Brain computer interface system based on indoor semi-autonomous navigation and motor imagery for unmanned aerial vehicle control. Expert Syst Appl 42:4196–4206. https://doi.org/10.1016/j.eswa.2015.01.031
Lin JS, Jiang ZY (2015) Implementing remote presence using quadcopter control by a non-invasive BCI device. Comput Sci Inf Technol 3:122–126. https://doi.org/10.13189/csit.2015.030405
Kim BH, Kim M, Jo S (2014) Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Comput Biol Med 51:82–92. https://doi.org/10.1016/j.compbiomed.2014.04.020
Khan MJ, Hong KS, Naseer N, Bhutta MR (2015) Hybrid EEG-NIRS based BCI for quadcopter control. In: 54th annual conference of the society of instrument and control engineers of Japan (SICE). IEEE, Hangzhou, pp 1177–1182. https://doi.org/10.1109/sice.2015.7285434
Khan MJ, Hong KS (2017) Hybrid EEG-fNIRS-based eight-command decoding for BCI: application to quadcopter control. Front Neurorobotics 11:1–13. https://doi.org/10.3389/fnbot.2017.00006
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
López, S., Cervantes, JA., Cervantes, S., Molina, J., Cervantes, F. (2020). Brain-Computer Interfaces for Controlling Unmanned Aerial Vehicles: Computational Tools for Cognitive Training. In: Samsonovich, A. (eds) Biologically Inspired Cognitive Architectures 2019. BICA 2019. Advances in Intelligent Systems and Computing, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-25719-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-25719-4_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25718-7
Online ISBN: 978-3-030-25719-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)