Skip to main content

Multi-agent Algorithm Imitating Formation of Phonemic Awareness

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2019 (BICA 2019)

Abstract

This paper proposes the cognitive speech perception model necessary as a theoretical basis for the development of universal automatic speech recognition systems that are highly effective in conditions of high noise and cocktail party situations. A formal description of the general structure of the act of speech perception and the main elements of the structural dynamics of the speech recognition process has been developed. The necessity of using the articulation event as a minimal basic pattern of sound image recognition has been proved. Using articulation event gives an opportunity to analyze such aspects of speech message as extra-linguistic components and intonation means of expression. Multi-agent systems are chosen as the formal means of implementation. An algorithm for supervised machine learning with an imitation of the mechanism of the formation of a human’s phonemic awareness is developed. It gives the possibility to create speech systems that are resistant to the diversity of accents and individual characteristics of the user.

The work was supported by RFBR grants â„– 18-01-00658, 19-01-00648.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marti A, Cobos M, Lopez J (2012) Automatic speech recognition in cocktail-party situations: a specific training for separated speech. J Acoust Soc Am 131(2):1529–1535. https://doi.org/10.1121/1.3675001

    Article  Google Scholar 

  2. Zion Golumbic EM, Ding N, Bickel S et al (2013) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991. https://doi.org/10.1016/j.neuron.2012.12.037

    Article  Google Scholar 

  3. Jurafsky D, Martin J (2008) Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd edn. Prentice Hall, New Jersey

    Google Scholar 

  4. Waibel A, Lee K-F (1990) Readings in Speech Recognition. Morgan Kaufman, Burlington

    Google Scholar 

  5. Nagoev Z, Lyutikova L, Gurtueva I: Model for Automatic Speech Recognition Using Multi-Agent Recursive Cognitive Architecture, Annual International Conference on Biologically Inspired Cognitive Architectures BICA, Prague, Chech Republic http://doi.org/10.1016/j.procs.2018.11.089

    Article  Google Scholar 

  6. Nagoev ZV (2013) Intellectics or thinking in living and artificial systems. Publishing House KBSC RAS, Nalchik [Nagoev, Z. V.: Intellektika ili myshleniye v zhyvych i iskusstvennych sistemach. Izdatel’stvo KBNC, Nal’chik (2013)]

    Google Scholar 

  7. Chomsky NA (1967) A review of skinner’s verbal behavior. In: Jakobovits LA, Miron MS (eds) Readings in the psychology of language. Prentice-Hall, New Jersey

    Google Scholar 

  8. Gazzaniga M (2009) Conversations in the cognitive neuroscience. The MIT Press, Cambridge

    Google Scholar 

  9. Minsky M (1988) The Society of Mind. Simon and Shuster, New York

    Google Scholar 

  10. Haikonen P (2003) The cognitive approach to conscious machines. Imprint Academic, Exeter

    Google Scholar 

  11. Newell A (1990) Unified Theories of Cognition. Harvard University Press, Cambridge

    Google Scholar 

  12. Schunk DH (2011) Learning theories: an educational perspective. Pearson Merrill Prentice Hall, New York

    Google Scholar 

  13. Wooldridge M (2009) An introduction to multi-agent systems. Wiley, Hoboken

    Google Scholar 

  14. Kotseruba Iu, Tsotsos J K, A Review of 40 Years of Cognitive Architecture Research: Core Cognitive Abilities and Practical Applications. arxiv.org/abs/1610.08602

    Google Scholar 

  15. Nagoev ZV, Nagoeva OV (2015) Knowledge Extraction from Multimodal Streams of Unstructured Data on the Base of Self-Organization of Multi-Agent Cognitive Architecture for Mobile Robot. News of KBSC of RAS 6(68):73–85 [Nagoev Z V, Nagoeva O V: Izvlechenie znanii iz mnogomodal’nyh potokov nestrukturirovannyh dannyh na osnove samoorganizatsii mul’tiagentnoi kognitivnoi arhitektury mobil’nogo robota. Izvestia KBNC RAN 6(68), 73–85 (2015)]

    Google Scholar 

  16. Nagoev ZV, Denisenko VA, Lyutikova LA (2018) Learning system of autonomous agricultural robot for static images recognition on the base of multi-agent cognitive architectures. Sustainable Dev Mountain Territ 2:289–297 [Nagoev, Z. V., Denisenko, V. A., Lyutikova, L. A.: Sistema obucheniya avtonomnogo sel’skohozyaistvennogo robota raspoznavaniyu staticheskih izobrazhenii na osnove multiagentnyh kognitivnyh arhitektur. Ustoichivoie razvitie gornyh territoii 2, 289-297 (2018).]

    Article  Google Scholar 

  17. Sorokin VN (2007) Motor speech perception theory and inner model theory. Inf Process 7(1):1–12 [Sorokin, V. N.: Motornaya teoriya vospriyatia rechi i teoriya vnutrennei modeli. Informatsionniye protsessy 7(1), 1-12 (2007).]

    Google Scholar 

  18. Morozov VP, Vartanyan IA, Galunov VI (1988) Speech Perception: Problems of Functional Brain Asymmetry. Science, St. Petersburgh

    Google Scholar 

  19. Nagoev Z V, Nagoeva O V (2017) Visual analyzer of intellectual robot for unstructured data processing on the base of multi-agent neurocognitive architechture. In: Advanced systems and management tasks: proceedings of the 12th all-russian conference, pp. 457–467. Rostov-on-Don. [Nagoev, Z. V., Nagoeva, O. V.: Zritel’nyi analizator intellektual’nogo robota dlya obrabotki nestrukturirovannyh dannyh na osnove mul’tiagentnoi neirocognitivnoi arhitektury. In:Perspektivnye sistemy I zadachi upravleniya: Materialy vserossiiskoi nauchno-prakticheskoi konferencii, 457–467. Rostov-na-Donu (2017)]

    Google Scholar 

  20. Coates A, Ng AY (2012) Learning feature representations with K-means. In: Montavon G, Orr GB, Müller K-R (eds) Neural networks: tricks of the trade, vol 7700. LNCS. Springer, Heidelberg, pp 561–580. https://doi.org/10.1007/978-3-642-35289-8_30

    Chapter  Google Scholar 

  21. Russel S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Pearson, London

    Google Scholar 

  22. Weber A, Scharenborg O (2012) Models of spoken-word recognition. WIREs Cogn Sci 3(3):387–401. https://doi.org/10.1002/wcs.1178

    Article  Google Scholar 

  23. Strange W (1995) Speech perception and linguistic experience: issues in cross-language research. York Press, Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Gurtueva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagoev, Z., Gurtueva, I., Malyshev, D., Sundukov, Z. (2020). Multi-agent Algorithm Imitating Formation of Phonemic Awareness. In: Samsonovich, A. (eds) Biologically Inspired Cognitive Architectures 2019. BICA 2019. Advances in Intelligent Systems and Computing, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-030-25719-4_47

Download citation

Publish with us

Policies and ethics