Abstract
In this paper we revisit some of the main aspects of the DAGS Key Encapsulation Mechanism, one of the code-based candidates to NIST’s standardization call for the key exchange/encryption functionalities. In particular, we modify the algorithms for key generation, encapsulation and decapsulation to fit an alternative KEM framework, and we present a new set of parameters that use binary codes. We discuss advantages and disadvantages for each of the variants proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If A is not invertible, abort and go back to 1.
- 2.
This is mostly a formal difference, since \(\tilde{H}\) is in fact the public key.
- 3.
In alternant form.
- 4.
See next section for details.
References
Banegas, G., et al.: DAGS: key encapsulation using dyadic GS codes. J. Math. Cryptol. 12, 221–239 (2018)
Banegas, G., Barreto, P.S.L.M., Persichetti, E., Santini, P.: Designing efficient dyadic operations for cryptographic applications. IACR Cryptology ePrint Archive 2018, p. 650 (2018)
Bardet, M., Bertin, M., Couvreur, A., Otmani, A.: Practical algebraic attack on DAGS. To appear
Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4
Bernstein, D.J., Persichetti, E.: Towards KEM unification. IACR Cryptology ePrint Archive 2018, p. 526 (2018)
Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient Implementation of a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_9
Faugere, J.-C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.-P.: Structural cryptanalysis of McEliece schemes with compact keys. DCC 79(1), 87–112 (2016)
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P:. Algebraic cryptanalysis of McEliece variants with compact keys - towards a complexity analysis. In: Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45–55. RHUL, June 2010
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212–219, May 1996
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1977). North-Holland Mathematical Library
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Code. Cryptogr. 49(1–3), 289–305 (2008)
Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. J. Math. Cryptol. 6(2), 149–169 (2012)
Sarwate, D.: On the complexity of decoding Goppa codes. IEEE Trans. Inf. Theory 23(4), 515–516 (1977)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Banegas, G. et al. (2019). DAGS: Reloaded Revisiting Dyadic Key Encapsulation. In: Baldi, M., Persichetti, E., Santini, P. (eds) Code-Based Cryptography. CBC 2019. Lecture Notes in Computer Science(), vol 11666. Springer, Cham. https://doi.org/10.1007/978-3-030-25922-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-25922-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-25921-1
Online ISBN: 978-3-030-25922-8
eBook Packages: Computer ScienceComputer Science (R0)