Skip to main content

Training Virtual Environment for Teaching Simulation and Control of Pneumatic Systems

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Abstract

It is clear that in recent years have emerged countless simulators in all possible work areas for reaching the goals of Industry 4.0. Unity Pro software focuses on studying the options and possibilities offered virtual environments for the teaching in schools and universities. The aim of this paper is intended to create a practical training environment for the simulation and control of a pneumatic process for the students of Industrial Process Engineering of Automation. This virtual environment uses MQTT protocol into a Raspberry Pi to transmit instruction for control a real FESTO pneumatic lab based on what students develop during their virtual classes, granting and facilitating the student and teacher a new method that accelerates the learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anokhin, A., Alontseva, E.: Implementation of human–machine interface design principles to prevent errors committed by NPP operators. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 822, pp. 743–753. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96077-7_81

    Chapter  Google Scholar 

  2. Daniel, G.: Skill training in multimodal virtual environments. Work 41, 2284–2287 (2012). https://doi.org/10.3233/WOR-2012-0452-2284

    Article  Google Scholar 

  3. Cardoso, A., et al.: VRCEMIG: a virtual reality system for real time control of electric substations. In: 2013 IEEE Virtual Reality (VR). Presented at the 2013 IEEE Virtual Reality (VR), pp. 165–166. IEEE, Lake Buena Vista (2013). https://doi.org/10.1109/VR.2013.6549414

  4. Chessa, M., Maiello, G., Borsari, A., Bex, P.J.: The perceptual quality of the oculus rift for immersive virtual reality. Hum.-Comput. Interact. 34, 51–82 (2019). https://doi.org/10.1080/07370024.2016.1243478

    Article  Google Scholar 

  5. Dave, I.R., Chaudhary, V., Upla, K.P.: Simulation of analytical chemistry experiments on augmented reality platform. In: Panigrahi, C.R., Pujari, A.K., Misra, S., Pati, B., Li, K.-C. (eds.) Progress in Advanced Computing and Intelligent Engineering. AISC, vol. 714, pp. 393–403. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0224-4_35

    Chapter  Google Scholar 

  6. MQTT Org: MQTT standard (2018). http://mqtt.org/

  7. Naranjo, J.E., Ayala, P.X., Altamirano, S., Brito, G., Garcia, M.V.: Intelligent oil field approach using virtual reality and mobile anthropomorphic robots. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 467–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_34

    Chapter  Google Scholar 

  8. Mujber, T.S., Szecsi, T., Hashmi, M.S.J.: Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 155–156, 1834–1838 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.401

    Article  Google Scholar 

  9. Gallagher, A.G., et al.: Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg. 241, 364–372 (2005). https://doi.org/10.1097/01.sla.0000151982.85062.80

    Article  Google Scholar 

  10. Di Gironimo, G., Matrone, G., Tarallo, A., Trotta, M., Lanzotti, A.: A virtual reality approach for usability assessment: case study on a wheelchair-mounted robot manipulator. Eng. Comput. 29, 359–373 (2013). https://doi.org/10.1007/s00366-012-0274-x

    Article  Google Scholar 

  11. Martín-Gutiérrez, J.: Virtual technologies trends in education. EURASIA J. Math. Sci. Technol. Educ. 13 (2017). https://doi.org/10.12973/eurasia.2017.00626a

  12. Davies, R.C.: Adapting virtual reality for the participatory design of work environments. Comput. Support. Coop. Work. (CSCW) 13, 1–33 (2004). https://doi.org/10.1023/B:COSU.0000014985.12045.9c

    Article  Google Scholar 

  13. Merchant, Z., Goetz, E.T., Keeney-Kennicutt, W., Cifuentes, L., Kwok, O., Davis, T.J.: Exploring 3-D virtual reality technology for spatial ability and chemistry achievement: exploring 3-D virtual reality technology. J. Comput. Assist. Learn. 29, 579–590 (2013). https://doi.org/10.1111/jcal.12018

    Article  Google Scholar 

  14. Merchant, Z., Goetz, E.T., Keeney-Kennicutt, W., Kwok, O., Cifuentes, L., Davis, T.J.: The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: a structural equation modeling analysis. Comput. Educ. 59, 551–568 (2012). https://doi.org/10.1016/j.compedu.2012.02.004

    Article  Google Scholar 

  15. Grajewski, D., Górski, F., Zawadzki, P., Hamrol, A.: Application of virtual reality techniques in design of ergonomic manufacturing workplaces. Procedia Comput. Sci. 25, 289–301 (2013). https://doi.org/10.1016/j.procs.2013.11.035

    Article  Google Scholar 

  16. Hedberg, J., Alexander, S.: Virtual reality in education: defining researchable issues. Educ. Media Int. 31, 214–220 (1994). https://doi.org/10.1080/0952398940310402

    Article  Google Scholar 

  17. Langley, A., et al.: Establishing the usability of a virtual training system for assembly operations within the automotive industry. Hum. Factors Ergon. Manuf. Serv. Ind. 26, 667–679 (2016). https://doi.org/10.1002/hfm.20406

    Article  Google Scholar 

  18. Garcia, M.V., Perez, F., Calvo, I., Moran, G.: Developing CPPS within IEC-61499 based on low cost devices. In: Proceedings of the IEEE International Workshop on Factory Communication Systems, WFCS (2015)

    Google Scholar 

  19. Unity [WWW Document] (2018). https://unity3d.com/es/unity. Accessed 23 Sept 2018

  20. Lanzotti, A., et al.: Interactive tools for safety 4.0: virtual ergonomics and serious games in tower automotive. In: Bagnara, S., Tartaglia, R., Albolino, S., Alexander, T., Fujita, Y. (eds.) IEA 2018. AISC, vol. 822, pp. 270–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96077-7_28

    Chapter  Google Scholar 

  21. Limniou, M., Roberts, D., Papadopoulos, N.: Full immersive virtual environment CAVETM in chemistry education. Comput. Educ. 51, 584–593 (2008). https://doi.org/10.1016/j.compedu.2007.06.014

    Article  Google Scholar 

  22. Sacks, R., Perlman, A., Barak, R.: Construction safety training using immersive virtual reality. Constr. Manag. Econ. 31, 1005–1017 (2013). https://doi.org/10.1080/01446193.2013.828844

    Article  Google Scholar 

  23. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP, pp. 1–7. IEEE (2017). https://doi.org/10.1109/SysEng.2017.8088251

  24. Asaad, M., Ahmad, F., Alam, M.S., Rafat, Y.: IoT enabled monitoring of an optimized electric vehicle’s battery system. Mob. Netw. Appl. 23, 994–1005 (2018). https://doi.org/10.1007/s11036-017-0957-z

    Article  Google Scholar 

Download references

Acknowledgment

This work was financed in part by Universidad Tecnica de Ambato (UTA) and their Research and Development Department under project CONIN-P-0167-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo V. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia, C.A., Naranjo, J.E., Alvarez-M., E., Garcia, M.V. (2019). Training Virtual Environment for Teaching Simulation and Control of Pneumatic Systems. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11613. Springer, Cham. https://doi.org/10.1007/978-3-030-25965-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25965-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25964-8

  • Online ISBN: 978-3-030-25965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics