Skip to main content

A Novel Ensemble Approach for Click-Through Rate Prediction Based on Factorization Machines and Gradient Boosting Decision Trees

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11642))

Abstract

Click-Through Rate (CTR) prediction is a significant technique in the field of computational advertising, its accuracy directly affects companies profits and user experience. Achieving great ability of generalization by learning complicated feature interactions behind user behaviors is critical in improving CTR for recommender systems. Factorization Machines (FM) is a hot recommender method for efficiently modeling features’ second-order interactions. Nevertheless, FM cannot capture the nonlinear and complex modes implied in the real-world data while it models feature in a linear way and just uses the second-order feature interactions. In this paper, we propose a model named GFM, which is an ensemble learning of FM and Gradient Boosting Decision Trees (GBDT) for recommendations. We use FM to model linear features and second-order feature interactions and use GBDT to model the side information for transforming the raw features to cross-combined features. In addition, we import the attention mechanism to calculate users’ latent attention on different features. To illustrate the performance of GFM, we conduct experiments on two real-world datasets, including a movie dataset and a music dataset, the results show that our model is effective in providing accurate recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/latest.

  2. 2.

    https://www.kaggle.com/c/kkbox-churn-prediction-challenge.

References

  1. Bai, B., et al.: Learning to rank with (a lot of) word features. Inf. Retr. 13(3), 291–314 (2010)

    Article  Google Scholar 

  2. Bayer, I., He, X., Kanagal, B., Rendle, S.: A generic coordinate descent framework for learning from implicit feedback. In: WWW, pp. 1341–1350. ACM (2017)

    Google Scholar 

  3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003). http://jmlr.org/papers/v3/bengio03a.html

  4. Blondel, M., Ishihata, M., Fujino, A., Ueda, N.: Polynomial networks and factorization machines: new insights and efficient training algorithms. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 850–858. JMLR.org (2016)

    Google Scholar 

  5. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative filtering: multimedia recommendation with item- and component-level attention. In: SIGIR, pp. 335–344. ACM (2017)

    Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

  7. Cheng, H., et al.: Wide & deep learning for recommender systems. In: DLRS@RecSys, pp. 7–10. ACM (2016)

    Google Scholar 

  8. Davidson, J., et al.: The Youtube video recommendation system. In: RecSys, pp. 293–296. ACM (2010)

    Google Scholar 

  9. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  10. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731. IJCAI.org (2017)

    Google Scholar 

  11. He, X., Chen, T., Kan, M., Chen, X.: TriRank: review-aware explainable recommendation by modeling aspects. In: CIKM, pp. 1661–1670. ACM (2015)

    Google Scholar 

  12. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: ADKDD@KDD, pp. 5:1–5:9. ACM (2014)

    Google Scholar 

  13. Hong, L., Doumith, A.S., Davison, B.D.: Co-factorization machines: modeling user interests and predicting individual decisions in Twitter. In: WSDM, pp. 557–566. ACM (2013)

    Google Scholar 

  14. Hong, R., Yang, Y., Wang, M., Hua, X.: Learning visual semantic relationships for efficient visual retrieval. IEEE Trans. Big Data 1(4), 152–161 (2015)

    Article  Google Scholar 

  15. Juan, Y., Zhuang, Y., Chin, W., Lin, C.: Field-aware factorization machines for CTR prediction. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016, pp. 43–50. ACM (2016). https://doi.org/10.1145/2959100.2959134

  16. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n recommender systems. In: KDD, pp. 659–667. ACM (2013)

    Google Scholar 

  17. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: NIPS, pp. 3149–3157 (2017)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  19. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_3

    Chapter  Google Scholar 

  20. Liu, D.C., et al.: Related pins at pinterest: the evolution of a real-world recommender system. In: WWW (Companion Volume), pp. 583–592. ACM (2017)

    Google Scholar 

  21. Oentaryo, R.J., Lim, E., Low, J., Lo, D., Finegold, M.: Predicting response in mobile advertising with hierarchical importance-aware factorization machine. In: WSDM, pp. 123–132. ACM (2014)

    Google Scholar 

  22. Petroni, F., Corro, L.D., Gemulla, R.: CORE: context-aware open relation extraction with factorization machines. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, Y. (eds.) Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, 17–21 September 2015, pp. 1763–1773. The Association for Computational Linguistics (2015). http://aclweb.org/anthology/D/D15/D15-1204.pdf

  23. Qiang, R., Liang, F., Yang, J.: Exploiting ranking factorization machines for microblog retrieval. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, San Francisco, CA, USA, 27 October–1 November 2013, pp. 1783–1788. ACM (2013). https://doi.org/10.1145/2505515.2505648

  24. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE Computer Society (2010)

    Google Scholar 

  25. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  26. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: SIGIR, pp. 635–644. ACM (2011)

    Google Scholar 

  27. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. In: EMNLP, pp. 379–389. The Association for Computational Linguistics (2015)

    Google Scholar 

  28. Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.C.: Deep crossing: web-scale modeling without manually crafted combinatorial features. In: KDD, pp. 255–262. ACM (2016)

    Google Scholar 

  29. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Wang, X., He, X., Feng, F., Nie, L., Chua, T.: TEM: tree-enhanced embedding model for explainable recommendation. In: WWW, pp. 1543–1552. ACM (2018)

    Google Scholar 

  31. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.: Attentional factorization machines: learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125. IJCAI.org (2017)

    Google Scholar 

  32. Xu, Z., Xia, M.: Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int. J. Intell. Syst. 27(9), 799–822 (2012)

    Article  Google Scholar 

  33. Zhou, G., et al.: Deep interest evolution network for click-through rate prediction. CoRR abs/1809.03672 (2018)

    Google Scholar 

  34. Zhou, G., et al.: Deep interest network for click-through rate prediction. In: KDD, pp. 1059–1068. ACM (2018)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (grants No. 61672133 and No. 61832001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Hu, G., Lin, H., Sun, J. (2019). A Novel Ensemble Approach for Click-Through Rate Prediction Based on Factorization Machines and Gradient Boosting Decision Trees. In: Shao, J., Yiu, M., Toyoda, M., Zhang, D., Wang, W., Cui, B. (eds) Web and Big Data. APWeb-WAIM 2019. Lecture Notes in Computer Science(), vol 11642. Springer, Cham. https://doi.org/10.1007/978-3-030-26075-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26075-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26074-3

  • Online ISBN: 978-3-030-26075-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics