Skip to main content

Architecture of Proactive Localization Service for Cyber-Physical System’s Users

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2019)

Abstract

In this article, a microservice architecture of cyber-physical space was considered and in particular localization service was implemented. We propose an architecture of proactive localization service, which allows predicting the activity of the tracked object in cyber-physical space. To solve the position prediction problem, we tested machine learning methods and contrasted the results of the trained models. Three machine learning algorithms were tested (artificial neural network, random forest, and decision tree) with two different datasets. The reason of high/low prediction accuracy were identified. As a result of testing, the best result has neural network. In this case mean absolute error is 8.2 and 11.7 m respectively for dataset №1 and №2, while random forest has 13 and 14 m error. The architecture of the service was developed using containerization technologies and special tools for their deployment and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Peng, Y., et al.: Review on cyber-physical systems. IEEE/CAA J. Automatica Sinica 4(1), 27–40 (2017)

    Article  Google Scholar 

  2. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.: Microservices: how to make your application scale. In: Petrenko, Alexander K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4_8

    Chapter  Google Scholar 

  3. Karasev, E.Yu., Vatamaniuk, I.V., Saveliev, A.I., Ronzhin, A.L.: Architectural solutions for integrating a video conferencing module into cyberphysical intelligent space. Informatsionno-upravliaiushchie sistemy [Inf. Control Syst.] 1, 2–10 (2018)

    Article  Google Scholar 

  4. Malov, D., Letenkov, M.: Method of synthetic data generation and architecture of face recognition system for interaction with robots in cyberphysical space. Robot. Tech. Cybern. 7(2), 100–108 (2019). https://doi.org/10.31776/RTCJ.7203

    Article  Google Scholar 

  5. Malov, D.A., Edemskii, A.Yu., Saveliev, A.I.: Development of a system of proactive localization of the cyber-physical space based on machine learning methods. Informacionnye tekhnologii I vichslitel’nyesistemy [J. Inf. Technol. Comput. Syst.] 4, 72–83 (2018)

    Google Scholar 

  6. Levonevskiy, D., Vatamaniuk, I., Malov D.A.: Obespechenie dostupnosti servisov korporativnogo intellektual’nogo prostranstva posredstvom upravleniya potokom vhodnyh dannyh [Ensuring the availability of corporate intellectual space services by managing the flow of input data]. Programmnaya inzheneriya [Softw. Eng.] 10(1), 20–29 (2019). (in Russian)

    Google Scholar 

  7. Levonevskiy, D., Vatamaniuk, I., Saveliev, A.I.: MINOS multimodal information and navigation cloud system for the corporate cyber-physical smart space. Programmnaya inzheneriya [Softw. Eng.] 8, 120–128 (2017)

    Article  Google Scholar 

  8. Bashari Rad, B., Bhatti, H., Mohammad, A.: An introduction to docker and analysis of its performance. IJCSNS Int. J. Comput. Sci. Netw. Secur. 173(8), 228–236 (2017)

    Google Scholar 

  9. Lavrenov, R.O., Magid, E.A., Matsuno, F., Svinin, M.M., Suthakorn, J.: Development and implementation of spline-based path planning algorithm in ROS/Gazebo environment. SPIIRAS Proc. 18(1), 57–84 (2019)

    Article  Google Scholar 

  10. Negrete, M., Savage, J., Contreras, L.: A motion-planning system for a domestic service robot. SPIIRAS Proc. 5(60), 5–38 (2018)

    Article  Google Scholar 

  11. Saveliev, A., Malov, D., Edemskii, A., Pavliuk, N.: Proactive localization system concept for users of cyber-physical space. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2018. LNCS (LNAI), vol. 11097, pp. 233–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99582-3_24

    Chapter  Google Scholar 

  12. Teilans, A.A., Romanovs, A.V., Merkuryev, Yu.A., Dorogovs, P.P., Kleins, A.Ya., Potryasaev, S.A: assessment of cyber physical system risks with domain specific modelling and simulation. SPIIRAS Proc. 4(59), 115–139 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The present research was partially supported by project No. MK-383.2018.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Malov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malov, D., Edemskii, A., Saveliev, A. (2019). Architecture of Proactive Localization Service for Cyber-Physical System’s Users. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2019. Lecture Notes in Computer Science(), vol 11659. Springer, Cham. https://doi.org/10.1007/978-3-030-26118-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26118-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26117-7

  • Online ISBN: 978-3-030-26118-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics