Skip to main content

Deep Cascade of Extra Trees

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11607))

Included in the following conference series:

Abstract

Deep neural networks have recently become popular because of their success in such domains as image and speech recognition, which has lead many to wonder whether other learners could benefit from deep, layered architectures. In this paper, we propose the Deep Cascade of Extra Trees (DCET) model. Representation learning in deep neural networks mostly relies on the layer-by-layer processing of raw features. Inspired by this, DCET uses a deep cascade of decision forests structure, where the cascade in each level receives the best feature information processed by the cascade of forests of its preceding level. Experiments show that its performance is quite robust regarding hyper-parameter settings; in most cases, even across different datasets from different domains, it is able to get excellent performance by using the same default setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/KaderBerrouachedi/Deep-Models/tree/master/DeepCascadeExtraTrees.

References

  1. Abdelkader, B., Rakia, J., Gilles, B.: Deep extremely randomized trees. In: International Joint Conference on Neural Networks (2019, to submitted)

    Google Scholar 

  2. Blake, C., Merz, C.: UCI repository of machine learning databases. Department of information and computer science. University of California, Irvine (1998). http://www.ics.uci.edu/~mlearn/mlrepository.html

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sa, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Maternal-Fetal Med. 9(5), 311–318 (2000)

    Article  Google Scholar 

  5. Dua, D., Taniskidou, E.K.: UCI machine learning repository. University of California, School of information and computer science, Irvine (2017). http://archive.ics.uci.edu/ml

  6. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  Google Scholar 

  7. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

    Article  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    Google Scholar 

  9. Johnson, B.A., Tateishi, R., Hoan, N.T.: A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. Int. J. Remote Sens. 34(20), 6969–6982 (2013)

    Article  Google Scholar 

  10. Keith, M., et al.: The high time resolution universe pulsar survey-i. System configuration and initial discoveries. Mon. Not. Roy. Astron. Soc. 409(2), 619–627 (2010)

    Article  Google Scholar 

  11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop (2015)

    Google Scholar 

  12. Kontschieder, P., Fiterau, M., Criminisi, A., Rota Bulo, S.: Deep neural decision forests. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1467–1475 (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, p. 2012 (2012)

    Google Scholar 

  14. Lyon, R.J., Stappers, B., Cooper, S., Brooke, J., Knowles, J.: Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Mon. Not. Roy. Astron. Soc. 459(1), 1104–1123 (2016)

    Article  Google Scholar 

  15. Lyon, R.J.: Why are pulsars hard to find? Ph.D. thesis, The University of Manchester, Manchester (2016)

    Google Scholar 

  16. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics, Portland, June 2011. http://www.aclweb.org/anthology/P11-1015

  17. Malerba, D., Esposito, F., Semeraro, G.: A further comparison of simplification methods for decision-tree induction. In: Fisher, D., Lenz, HJ. (eds.) Learning from Data. LNS, vol. 112, pp. 365–374. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-2404-4_35

    Chapter  Google Scholar 

  18. Miller, K., Hettinger, C., Humpherys, J., Jarvis, T., Kartchner, D.: Forward thinking: Building deep random forests. arXiv preprint arXiv:1705.07366 (2017)

  19. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)

    Google Scholar 

  20. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  22. Utkin, L.V., Ryabinin, M.A.: A siamese deep forest. arXiv preprint arXiv:1704.08715 (2017)

  23. Wang, S., Aggarwal, C., Liu, H.: Using a random forest to inspire a neural network and improving on it. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 1–9. SIAM (2017)

    Google Scholar 

  24. Zhou, Z.H., Feng, J.: Deep forest: Towards an alternative to deep neural networks. arXiv preprint arXiv:1702.08835 (2017)

  25. Zimek, A., Gaudet, M., Campello, R.J., Sander, J.: Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 428–436. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Berrouachedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berrouachedi, A., Jaziri, R., Bernard, G. (2019). Deep Cascade of Extra Trees. In: U., L., Lauw, H. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11607. Springer, Cham. https://doi.org/10.1007/978-3-030-26142-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26142-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26141-2

  • Online ISBN: 978-3-030-26142-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics