Skip to main content

Survey of Vehicular Network Simulators: A Temporal Approach

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2018)

Abstract

Evaluating protocols and applications for Intelligent Transportation Systems is the first step before deploying them in the real world. Simulations provide scalable evaluations with low costs. However, to produce reliable results, the simulators should implement models that represent as closely as possible real situations. In this survey, we provide a study of the main simulators focused on Intelligent Transport Systems assessment. Additionally, we examine the temporal evolution of these simulators giving information that leads to an overview understanding of how long the scientific community takes to absorb a new simulator proposal. The conclusions presented in this survey provide valuable insights that help researchers make better choices when selecting the appropriate simulator to evaluate new proposals.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Brazilian research agency (CNPq), the Research Foundation of the State of Minas Gerais (FAPEMIG) and the Federal University of Ouro Preto (UFOP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.aqualab.cs.northwestern.edu/projects/111-c3-car-to-car-cooperation-for-vehicular-ad-hoc-networks.

  2. 2.

    http://www.openstreetmap.org.

References

  1. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Framework and Rules. IEEE Standard 1516–2000, pp. 1–22 (2000)

    Google Scholar 

  2. ns-2. http://www.isi.edu/nsnam/ns/ (2017). Accessed 29 Sept 2017

  3. QualNet. http://web.scalable-networks.com/content/qualnet (2017). Accessed 30 Sept 2017

  4. Abdoos, M., Mozayani, N., Bazzan, A.L.C.: Traffic light control in non-stationary environments based on multi agent q-learning. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (2011)

    Google Scholar 

  5. Arbabi, H., Weigle, M.C.: Highway mobility and vehicular ad-hoc networks in ns-3. In: Proceedings of the Winter Simulation Conference (2010)

    Google Scholar 

  6. Arellano, W., Mahgoub, I.: TrafficModeler extensions: a case for rapid VANET simulation using, OMNE, SUMO, and VEINS. In: 10th High Capacity Optical Networks and Emerging/Enabling Technologies (2013)

    Google Scholar 

  7. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: BonnMotion: a mobility scenario generation and analysis tool. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques (2010)

    Google Scholar 

  8. Barr, R.: An efficient, unifying approach to simulation using virtual machines. Ph.D. thesis (2004)

    Google Scholar 

  9. Barr, R., Haas, Z.J., Van Renesse, R.: Scalable wireless ad hoc network simulation. In: Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad hoc Wireless, and Peer-to-Peer Networks, pp. 297–311 (2005)

    Google Scholar 

  10. Bononi, L., Felice, M.D., D’Angelo, G., Bracuto, M., Donatiello, L.: MoVES: a framework for parallel and distributed simulation of wireless vehicular ad hoc networks. Comput. Netw. 52, 155–179 (2008)

    Article  Google Scholar 

  11. Choffnes, D.R., Bustamante, F.E.: An integrated mobility and traffic model for vehicular wireless networks. In: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks (2005)

    Google Scholar 

  12. Cianci, C.M., Pugh, J., Martinoli, A.: Exploration of an incremental suite of microscopic models for acoustic event monitoring using a robotic sensor network. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008 (2008)

    Google Scholar 

  13. Dogru, N., Subasi, A.: Traffic accident detection using random forest classifier. In: 15th Learning and Technology Conference (2018)

    Google Scholar 

  14. Eckhoff, D., Brummer, A., Sommer, C.: On the impact of antenna patterns on VANET simulation. In: 8th IEEE Vehicular Networking Conference (2016)

    Google Scholar 

  15. Eckhoff, D., Sommer, C.: A multi-channel IEEE 1609.4 and 802.11p EDCA model for the veins framework. In: 5th ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (2012)

    Google Scholar 

  16. Eckhoff, D., Sommer, C., Dressler, F.: On the necessity of accurate IEEE 802.11p models for IVC protocol simulation. In: 75th IEEE Vehicular Technology Conference, pp. 1–5 (2012)

    Google Scholar 

  17. Fan, S.K.S., Su, C.J., Nien, H.T., Tsai, P.F., Cheng, C.Y.: Using machine learning and big data approaches to predict travel time based on historical and real-time data from taiwan electronic toll collection. Soft. Comput. 22(17), 5707–5718 (2018)

    Article  Google Scholar 

  18. Fellendorf, M.: VISSIM: a microscopic simulation tool to evaluate actuated signal control including bus priority. In: 64th Institute of Transportation Engineers Annual Meeting (1994)

    Google Scholar 

  19. Fiore, M., Harri, J., Filali, F., Bonnet, C.: Vehicular mobility simulation for VANETs. In: 40th Annual Simulation Symposium (2007)

    Google Scholar 

  20. Fritzsche, H.T., Ag, D.B.: Amodel for traffic simulation. Traffic Eng. Control 35, 317–321 (1994)

    Google Scholar 

  21. Gorgorin, C., Gradinescu, V., Diaconescu, R., Cristea, V., Ifode, L.: An integrated vehicular and network simulator for vehicular ad-hoc networks. In: Proceedings of the European Simulation and Modelling Conference (2006)

    Google Scholar 

  22. Guan, S., Grande, R.E.D., Boukerche, A.: Real-time 3D visualization for distributed simulations of VANets. In: IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications (2014)

    Google Scholar 

  23. Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutor. 11(4), 19–41 (2009)

    Article  Google Scholar 

  24. Härri, J., Filali, F., Bonnet, C., Fiore, M.: VanetMobiSim: generating realistic mobility patterns for VANETs. In: Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks (2006)

    Google Scholar 

  25. Hrizi, F., Filali, F.: simITS: an integrated and realistic simulation platform for vehicular networks. In: Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (2010)

    Google Scholar 

  26. Kargl, F., Schoch, E.: Simulation of MANETs: a qualitative comparison between JiST/SWANS and ns-2. In: Proceedings of the 1st International Workshop on System Evaluation for Mobile Platforms (2007)

    Google Scholar 

  27. Karnadi, F.K., Mo, Z.H., Lan, K.: Rapid generation of realistic mobility models for VANET. In: 2007 IEEE Wireless Communications and Networking Conference (2007)

    Google Scholar 

  28. Killat, M., et al.: Enabling efficient and accurate large-scale simulations of VANETs for vehicular traffic management. In: Proceedings of the 4th ACM International Workshop on Vehicular Ad Hoc Networks (2007)

    Google Scholar 

  29. Klautau, A., Batista, P., Prelcic, N., Wang, Y., Heath, R.: 5G MIMO data for machine learning: application to beam-selection using deep learning. In: Proceedings on Information Theory and Applications Workshop, pp. 1–6 (2016)

    Google Scholar 

  30. Klingler, F., Pannu, G.S., Sommer, C., Dressler, F.: Poster: connecting simulation and real world: IEEE 802.11p in the loop. In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking (2017)

    Google Scholar 

  31. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  32. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: SUMO (Simulation of Urban MObility)-an open-source traffic simulation. In: Proceedings of the 4th Middle East Symposium on Simulation and Modelling (2002)

    Google Scholar 

  33. Krauß, S.: Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis (1998)

    Google Scholar 

  34. Llatser, I., Jornod, G.S., Festag, A., Mansolino, D., Navarro Oiza, I., Martinoli, A.: Simulation of cooperative automated driving by bidirectional coupling of vehicle and network simulators. In: IEEE Intelligent Vehicles Symposium (IV) (2017)

    Google Scholar 

  35. Lochert, C., Barthels, A., Cervantes, A., Mauve, M., Caliskan, M.: Multiple simulator interlinking environment for IVC. In: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks (2005)

    Google Scholar 

  36. Mangharam, R., Weller, D., Rajkumar, R., Mudalige, P., Bai, F.: GrooveNet: a hybrid simulator for vehicle-to-vehicle networks. In: 3rd Annual International Conference on Mobile and Ubiquitous Systems - Workshops (2006)

    Google Scholar 

  37. Marfia, G., Pau, G., De Sena, E., Giordano, E., Gerla, M.: Evaluating vehicle network strategies for downtown portland: opportunistic infrastructure and the importance of realistic mobility models. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (2007)

    Google Scholar 

  38. McLean, T., Fujimoto, R., Fitzgibbons, B.: Next generation real-time RTI software. In: 5th IEEE International Workshop on Distributed Simulation and Real-Time Applications (2001)

    Google Scholar 

  39. Mota, V.F., Cunha, F.D., Macedo, D.F., Nogueira, J.M., Loureiro, A.A.: Protocols, mobility models and tools in opportunistic networks: a survey. Comput. Commun. 48, 5–19 (2014)

    Article  Google Scholar 

  40. Nimje, T.G., Dorle, S.: A survey on various mobility models to improve realistic simulation and accuracy of IVC protocols. In: International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN) (2013)

    Google Scholar 

  41. Pigné, Y., Danoy, G., Bouvry, P.: A platform for realistic online vehicular network management. In: IEEE Globecom Workshops (2010)

    Google Scholar 

  42. Piórkowski, M., Raya, M., Lugo, A.L., Papadimitratos, P., Grossglauser, M., Hubaux, J.P.: TraNS: realistic joint traffic and network simulator for VANETs. SIGMOBILE Mob. Comput. Commun. Rev. 12, 31–33 (2008)

    Article  Google Scholar 

  43. Riley, G.F.: Large-scale network simulations with GTNetS. In: Proceedings of the 2003 Winter Simulation Conference (2003)

    Google Scholar 

  44. Rondinone, M., et al.: iTETRIS: a modular simulation platform for the large scale evaluation of cooperative ITS applications. Simul. Model. Pract. Theory 34, 99–125 (2013)

    Article  Google Scholar 

  45. Rothery, R.W.: Car following models. In: Traffic Flow Theory (1992)

    Google Scholar 

  46. Russo, K.L., Shuette, L.C., Smith, J.E., McGuire, M.E.: Effectiveness of various new bandwidth reduction techniques in ModSAF. In: Proceedings of the 13th Workshop on Standards for the Interoperability of Distributed Simulations (1995)

    Google Scholar 

  47. Schünemann, B.: V2X simulation runtime infrastructure VSimRTI: an assessment tool to design smart traffic management systems. Comput. Netw. 55, 3189–3198 (2011)

    Article  Google Scholar 

  48. Seskar, I., Maric, S.V., Holtzman, J., Wasserman, J.: Rate of location area updates in cellular systems. In: IEEE 42nd Vehicular Technology Conference (1992)

    Google Scholar 

  49. Silva, M.J., Silva, G.I., Teixeira, F.A., Oliveira, R.A.: Temporal evolution of vehicular network simulators: challenges and perspectives. In: Proceedings of the 20th International Conference on Enterprise Information Systems (2018)

    Google Scholar 

  50. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10, 3–15 (2011)

    Article  Google Scholar 

  51. Sommer, C., Dressler, F.: Progressing toward realistic mobility models in VANET simulations. IEEE Commun. Mag. 46(11), 132–137 (2008)

    Article  Google Scholar 

  52. Sommer, C., Eckhoff, D., Dressler, F.: IVC in cities: signal attenuation by buildings and how parked cars can improve the situation. IEEE Trans. Mob. Comput. 13(8), 1733–1745 (2014)

    Article  Google Scholar 

  53. Teixeira, F.A., e Silva, V.F., Leoni, J.L., Macedo, D.F., Nogueira, J.M.S.: Vehicular networks using the IEEE 802.11p standard: an experimental analysis. Veh. Commun. 1, 91–96 (2014)

    Article  Google Scholar 

  54. Thomas, R.W., Vidal, J.M.: Toward detecting accidents with already available passive traffic information. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (2017)

    Google Scholar 

  55. Tian, J., Hahner, J., Becker, C., Stepanov, I., Rothermel, K.: Graph-based mobility model for mobile ad hoc network simulation. In: 2002 Proceedings of 35th Annual Simulation Symposium (2002)

    Google Scholar 

  56. Tomandl, A., Herrmann, D., Fuchs, K.P., Federrath, H., Scheuer, F.: VANETsim: an open source simulator for security and privacy concepts in VANETs. In: 12th International Conference on High Performance Computing Simulation (HPCS) (2014)

    Google Scholar 

  57. Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutor. 17, 868–887 (2015)

    Article  Google Scholar 

  58. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  59. Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.M.: Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans. Mob. Comput. 13(5), 1061–1075 (2014)

    Article  Google Scholar 

  60. Varga, A.: OMNeT++. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 35–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3_3

    Chapter  Google Scholar 

  61. Vuyyuru, R., Oguchi, K.: Vehicle-to-vehicle ad hoc communication protocol evaluation using realistic simulation framework. In: 2007 Fourth Annual Conference on Wireless on Demand Network Systems and Services (2007)

    Google Scholar 

  62. Wang, S.Y., et al.: NCTUns 4.0: an integrated simulation platform for vehicular traffic, communication, and network researches. In: IEEE 66th Vehicular Technology Conference (2007)

    Google Scholar 

  63. Wang, S., Chou, C.: {NCTUns} tool for wireless vehicular communication network researches. Simul. Model. Pract. Theory 17(7), 1211–1226 (2009)

    Article  Google Scholar 

  64. Wu, H., Lee, J., Hunter, M., Fujimoto, R., Guensler, R., Ko, J.: Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta, Georgia, I–75 corridor. Transp. Res. Rec.: J. Transp. Res. Board 1910, 82–89 (2005)

    Article  Google Scholar 

  65. Zemouri, S., Mehar, S., Senouci, S.M.: HINTS: a novel approach for realistic simulations of vehicular communications. In: Proceedings of the 4th Global Information Infrastructure and Networking Symposium (2012)

    Google Scholar 

  66. Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: a library for parallel simulation of large-scale wireless networks. In: Proceedings 12th Workshop on Parallel and Distributed Simulation (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio J. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, M.J., Silva, G.I., Ferreira, C.M.S., Teixeira, F.A., Oliveira, R.A. (2019). Survey of Vehicular Network Simulators: A Temporal Approach. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2018. Lecture Notes in Business Information Processing, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-26169-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26169-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26168-9

  • Online ISBN: 978-3-030-26169-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics