Skip to main content

Fully Dynamic Arboricity Maintenance

  • Conference paper
  • First Online:
  • 915 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Abstract

Given an undirected graph, its arboricity is the minimum number of edge disjoint forests, its edge set can be partitioned into. We develop the first fully dynamic algorithms to determine the arboricity of a graph under edge insertions and deletions. While our insertion algorithm is based on known static algorithms to determine the arboricity, our deletion algorithm is, to the best of our knowledge, new.

Our algorithms take \({\tilde{O}} (m)\) time (\({\tilde{O}}\) notation ignores logarithmic factors.) to insert or delete an edge where m is the number of edges in the graph while the best static algorithm to compute arboricity takes \(O(m^{3/2}\log (n^2/m))\) time [7].

We complement our upper bound with a lower bound result of amortized \(\varOmega (\log n)\) for any algorithm that maintains a forest decomposition of size arboricity of the graph under edge insertions and deletions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Proofs of results marked \(\star \) are deferred to the full version.

References

  1. Berglin, E., Brodal, G.S.: A simple greedy algorithm for dynamic graph orientation. In: 28th International Symposium on Algorithms and Computation, ISAAC 2017, Phuket, Thailand, 9–12 December 2017, pp. 12:1–12:12 (2017)

    Google Scholar 

  2. Brodal, G.S., Fagerberg, R.: Dynamic representation of sparse graphs. In: 6th International Workshop on Algorithms and Data Structures, WADS 1999, Vancouver, British Columbia, Canada, 11–14 August 1999, Proceedings, pp. 342–351 (1999)

    Google Scholar 

  3. Edmonds, J.: Lehman’s switching game and a theorem of Tutte and Nash-Williams. Natl Bur. Stan. 69B, 73–77 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Edmonds, J.: Minimum partition of a matroid into independent subsets. Natl Bur. Stan. 69B, 67–72 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211 (1994)

    Article  MathSciNet  Google Scholar 

  6. Erickson, J.: http://jeffe.cs.illinois.edu/teaching/datastructures/2006/problems/bill-arboricity.pdf

  7. Gabow, H.N.: Algorithms for graphic polymatroids and parametriscs-sets. J. Algorithms 26(1), 48–86 (1998)

    Article  MathSciNet  Google Scholar 

  8. Grossi, R., Lodi, E.: Simple planar graph partition into three forests. Discrete Appl. Math. 84(1–3), 121–132 (1998)

    Article  MathSciNet  Google Scholar 

  9. He, M., Tang, G., Zeh, N.: Orienting dynamic graphs, with applications to maximal matchings and adjacency queries. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 128–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_11

    Chapter  MATH  Google Scholar 

  10. Kopelowitz, T., Krauthgamer, R., Porat, E., Solomon, S.: Orienting fully dynamic graphs with worst-case time bounds. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 532–543. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_45

    Chapter  Google Scholar 

  11. Kowalik, L.: Adjacency queries in dynamic sparse graphs. Inf. Process. Lett. 102(5), 191–195 (2007)

    Article  MathSciNet  Google Scholar 

  12. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  13. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39(1), 12 (1964)

    Article  MathSciNet  Google Scholar 

  14. Patrascu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35(4), 932–963 (2006)

    Article  MathSciNet  Google Scholar 

  15. Roskind, J., Tarjan, R.E.: A note on finding minimum-cost edge-disjoint spanning trees. Math. Oper. Res. 10(4), 701–708 (1985)

    Article  MathSciNet  Google Scholar 

  16. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MathSciNet  Google Scholar 

  17. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranka Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, N., Raman, V., Saurabh, S. (2019). Fully Dynamic Arboricity Maintenance. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics