Skip to main content

The Seeding Algorithm for Functional k-Means Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

Abstract

The functional k-means problem involves different data from k-means problem, where the functional data is a kind of dynamic data and is generated by continuous processes. By defining a new distance with derivative information, the functional k-means clustering algorithm can be used well for functional k-means problem. In this paper, we mainly investigate the seeding algorithm for functional k-means problem and show that the performance guarantee is obtained as \(8(\mathrm{ln}~k+2)\). Moreover, we present the numerical experiment showing the validity of this algorithm, comparing to the functional k-means clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N.: Unsupervised curve clustering using B-splines. Scand. J. Stat. 30(3), 581–595 (2003)

    Article  MathSciNet  Google Scholar 

  2. Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means clustering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 15–28. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03685-9_2

    Chapter  Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: Nikhil, B., Kirk, P., Clifford, S. (eds.) SODA 2007, Theory, pp. 1027–1035. SIAM, Philadelphia (2007). https://doi.org/10.1145/1283383.1283494

  4. Boullé, M.: Functional data clustering via piecewise constant nonparametric density estimation. Pattern Recogn. 45(12), 4389–4401 (2012)

    Article  Google Scholar 

  5. Bouveyron, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional data: a review. Comput. Stat. Data Anal. 71, 52–78 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gamasaee, R., Zarandi, M.: A new Dirichlet process for mining dynamic patterns in functional data. Inf. Sci. 405, 55–80 (2017)

    Article  Google Scholar 

  7. Har-Peled, S., Sadri, B.: How fast is the \(k\)-means method? Algorithmica 71(3), 185–202 (2005)

    Article  MathSciNet  Google Scholar 

  8. Jacques, J., Preda, C.: Functional data clustering: a survey. Adv. Data Anal. Classif. 8(3), 231–255 (2014)

    Article  MathSciNet  Google Scholar 

  9. Kayano, M., Dozono, K., Konishi, S.: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application. J. Classif. 27(2), 211–230 (2010)

    Article  MathSciNet  Google Scholar 

  10. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  11. Meng, Y., Liang, J., Cao, F., He, Y.: A new distance with derivative information for functional \(k\)-means clustering algorithm. Inf. Sci. 463–464, 166–185 (2018)

    Article  Google Scholar 

  12. Ostrovsky, R., Rabani, Y., Schulman, L., Swamy, C.: The effectiveness of Lloyd-type methods for the \(k\)-means problem. J. ACM 59(6), 28:1–28:22 (2012)

    Article  MathSciNet  Google Scholar 

  13. Park, J., Ahn, J.: Clustering multivariate functional data with phase variation. Biometrics 73(1), 324–333 (2017)

    Article  MathSciNet  Google Scholar 

  14. Peng, J., Müller, H.G.: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions. Ann. Appl. Stat. 2(3), 1056–1077 (2008)

    Article  MathSciNet  Google Scholar 

  15. Preda, C., Saporta, G., Lévéder, C.: PLS classification of functional data. Comput. Statistics 22(2), 223–235 (2007)

    Article  MathSciNet  Google Scholar 

  16. Tarpey, T., Kinateder, K.K.: Clustering functional data. J. Classif. 20(1), 93–114 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is supported by Higher Educational Science and Technology Program of Shandong Province (No. J17KA171). The second author is supported by National Natural Science Foundation of China (No. 61433012), Shenzhen research grant (KQJSCX20180330170311901, JCYJ20180305180840138 and GGFW2017073114031767). The third author is supported by National Natural Science Foundation of China (No. 11531014). The fourth author is supported by National Natural Science Foundation of China (No. 11871081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Wang, Y., Xu, D., Zhang, D. (2019). The Seeding Algorithm for Functional k-Means Problem. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics