Abstract
Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance \(d_w(p, q)\) between two points \(p,q \in S\) is defined as \(w(p) + d(p, q) + w(q)\) if \(p \ne q\) and it is zero if \(p = q\). Here, d(p, q) is the geodesic Euclidean distance between p and q. For a real number \(t > 1\), a graph G(S, E) is called a t-spanner for the weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.\(d_w(p, q)\) for a real number \(t > 1\). For some integer \(k \ge 1\), a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set \(S' \subset S\) with cardinality at most k, the graph \(G \setminus S'\) is a t-spanner for the points in \(S \setminus S'\). For any given real number \(\epsilon > 0\), we present algorithms to compute a \((k, 4+\epsilon )\)-VFTAWS for the metric space \((S, d_w)\) resulting from the following: (i) points in S are in the free space of the polygonal domain, (ii) points in S lying on a terrain.
This research is supported in part by SERB MATRICS grant MTR/2017/000474.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abam, M.A., Adeli, M., Homapour, H., Asadollahpoor, P.Z.: Geometric spanners for points inside a polygonal domain. In: Proceedings of Symposium on Computational Geometry, pp. 186–197 (2015)
Abam, M.A., de Berg, M.: Kinetic spanners in \(\mathbb{R}^d\). Discrete Comput. Geom. 45(4), 723–736 (2011)
Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discrete Comput. Geom. 41(4), 556–582 (2009)
Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.H.M.: Geometric spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)
Abam, M.A., de Berg, M., Gudmundsson, J.: A simple and efficient kinetic spanner. Comput. Geom. 43(3), 251–256 (2010)
Abam, M.A., de Berg, M., Seraji, M.J.R.: Geodesic spanners for points on a polyhedral terrain. In: Proceedings of Symposium on Discrete Algorithms, pp. 2434–2442 (2017)
Abu-Affash, A.K., Aschner, R., Carmi, P., Katz, M.J.: Minimum power energy spanners in wireless ad hoc networks. Wirel. Netw. 17(5), 1251–1258 (2011)
Alon, N., Seymour, P.D., Thomas, R.: Planar separators. SIAM J. Discrete Math. 7(2), 184–193 (1994)
Althöfer, I., Das, G., Dobkins, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)
Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis, C.D.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61680-2_79
Aronov, B., et al.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008)
Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of Annual ACM Symposium on Theory of Computing, pp. 489–498 (1995)
Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: randomized solutions. Comput. Geom. 13(2), 91–107 (1999)
Arya, S., Mount, D.M., Smid, M.H.M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proceedings of Annual Symposium on Foundations of Computer Science, pp. 703–712 (1994)
Arya, S., Smid, M.H.M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17(1), 33–54 (1997)
Bhattacharjee, S., Inkulu, R.: Fault-tolerant additive weighted geometric spanners. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_3
Bose, P., Carmi, P., Couture, M., Maheshwari, A., Smid, M., Zeh, N.: Geometric spanners with small chromatic number. Comput. Geom. 42(2), 134–146 (2009)
Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy spanner in near-quadratic time. Algorithmica 58(3), 711–729 (2010)
Bose, P., Carmi, P., Chaitman, L., Collette, S., Katz, M.J., Langerman, S.: Stable roommates spanner. Comput. Geom. 46(2), 120–130 (2013)
Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 367–377. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69903-3_33
Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained bounded-degree spanners. Algorithmica 81, 1392 (2018)
Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3), 249–264 (2005)
Bose, P., Smid, M., Xu, D.: Delaunay and diamond triangulations contain spanners of bounded degree. Int. J. Comput. Geom. Appl. 19(02), 119–140 (2009)
Carmi, P., Chaitman, L.: Bounded degree planar geometric spanners. CoRR, arXiv:1003.4963 (2010)
Carmi, P., Chaitman, L.: Stable roommates and geometric spanners. In: Proceedings of the 22nd Annual Canadian Conference on Computational Geometry, pp. 31–34 (2010)
Carmi, P., Smid, M.H.M.: An optimal algorithm for computing angle-constrained spanners. J. Comput. Geom. 3(1), 196–221 (2012)
Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)
Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete Comput. Geom. 32(2), 207–230 (2004)
Das, G., Joseph, D.: Which triangulations approximate the complete graph? In: Djidjev, H. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51859-2_15
Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7(4), 297–315 (1997)
Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (1999)
Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall, Boca Raton (2007)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)
Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)
Kapoor, S., Li, X.-Y.: Efficient construction of spanners in d-dimensions. CoRR, arXiv:1303.7217 (2013)
Keil, J.M., Gutwin, C.A.: The Delaunay triangulation closely approximates the complete Euclidean graph. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 47–56. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9_6
Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)
Lukovszki, T.: New results of fault tolerant geometric spanners. In: Proceedings of Workshop on Algorithms and Data Structures, pp. 193–204 (1999)
Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)
Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
Segal, M., Shpungin, H.: Improved multi-criteria spanners for ad-hoc networks under energy and distance metrics. In: IEEE INFOCOM, pp. 6–10 (2010)
Smid, M.: Geometric spanners with few edges and degree five. In: Gudmundsson, J., Jay, C.B. (eds.) CATS 2006, pp. 7–9. Australian Computer Society (2006)
Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In: Proceedings of Symposium on Theory of Computing, pp. 363–372 (2014)
Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of ACM Symposium on Theory of Computing, pp. 281–290 (2004)
Wang, Y., Li, X.-Y.: Minimum power assignment in wireless ad hoc networks with spanner property. J. Comb. Optim. 11(1), 99–112 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bhattacharjee, S., Inkulu, R. (2019). Geodesic Fault-Tolerant Additive Weighted Spanners. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-26176-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26175-7
Online ISBN: 978-3-030-26176-4
eBook Packages: Computer ScienceComputer Science (R0)