Skip to main content

Maximization of Constrained Non-submodular Functions

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11653))

Included in the following conference series:

  • 1154 Accesses

Abstract

We investigate a non-submodular maximization problem subject to a p-independence system constraint, where the non-submodularity of the utility function is characterized by a series of parameters, such as submodularity (supmodularity) ratio, generalized curvature, and zero order approximate submodularity coefficient, etc. Inspired by Feldman et al. [15] who consider a non-monotone submodular maximization with a p-independence system constraint, we extend their Repeat-Greedy algorithm to non-submodular setting. While there is no general reduction to convert algorithms for submodular optimization problems to non-submodular optimization problems, we are able to show the extended Repeat-Greedy algorithm has an almost constant approximation ratio for non-monotone non-submodular maximization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submodular maximization: massive data summarization on the fly. In: 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 671–680. ACM (2014)

    Google Scholar 

  2. Bian, A.-A., Buhmann, J.-M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: 34th International Conference on Machine Learning, pp. 498–507. JMLR (2017)

    Google Scholar 

  3. Bogunovic, I., Zhao, J., Cevher, V.: Robust maximization of non-submodular objectives. In: 21st International Conference on Artificial Intelligence and Statistics, pp. 890–899. Playa Blanca, Lanzarote (2018)

    Google Scholar 

  4. Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique arXiv:1611.03253 (2016)

  5. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms 14(3), 32 (2018)

    Article  MathSciNet  Google Scholar 

  6. Buchbinder, N., Feldman, M., Naor, J.-S., Schwartz, R.: Submodular maximization with cardinality constraints. In: 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1433–1452. Society for Industrial and Applied Mathematics (2014)

    Google Scholar 

  7. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time \(1/2\)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384–1402 (2015)

    Article  MathSciNet  Google Scholar 

  8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chen, W., Zhang, H.: Complete submodularity characterization in the comparative independent cascade model. Theor. Comput. Sci. (2018)

    Google Scholar 

  10. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  Google Scholar 

  11. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: 28th International Conference on Machine Learning, pp. 1057–1064. Omnipress (2011)

    Google Scholar 

  12. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the blogosphere, In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 289–298. ACM (2009)

    Google Scholar 

  13. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  14. Feige, U., Mirrokni, V.-S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  15. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: 30th Annual Conference on Learning Theory, pp. 758–784. Springer (2017)

    Google Scholar 

  16. Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In: 27th International Conference on Machine Learning, pp. 391–398. Omnipress (2010)

    Google Scholar 

  17. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5_20

    Chapter  Google Scholar 

  18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  19. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)

    Article  MathSciNet  Google Scholar 

  20. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp, 510–520. Association for Computational Linguistics (2011)

    Google Scholar 

  21. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular maximization: personalized data summarization. In: 33rd International Conference on Machine Learning, pp. 1358–1366. JMLR (2016)

    Google Scholar 

  22. Nemhauser, G.-L., Wolsey, L.-A., Fisher, M.-L.: An analysis of approximations for maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  23. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  24. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first two authors are supported by Natural Science Foundation of China (Nos. 11531014, 11871081). The third author is supported by Natural Sciences and Engineering Research Council of Canada (No. 283106). The fourth author is supported by China Postdoctoral Science Foundation funded project (No. 2018M643233) and Natural Science Foundation of China (No. 61433012). The fifth author is supported by Natural Science Foundation of Shanxi province (No. 201801D121022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R., Xu, D., Du, D., Xu, Y., Yan, X. (2019). Maximization of Constrained Non-submodular Functions. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26176-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26175-7

  • Online ISBN: 978-3-030-26176-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics