Skip to main content

Hierarchical Competition Framework for Particle Swarm Optimization

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11655))

Included in the following conference series:

Abstract

Particles in PSO algorithms evolve only in one group, or in many groups but without interaction between different groups. Inspired by the concept of social class evolution process, a hierarchical competition framework is proposed in this paper. Through the competition mechanism, particles can flow dynamically between different levels, and this can reduce the probability of top-level particles leading to a wrong direction and in this way enhance the global search ability. In this paper, the proposed framework is tested in combination with the canonical PSO and one of the most famous variant particle warm optimizers, named quantum-behaved particle swarm optimizer. All the experiments are run on the CEC’2013 benchmark function database, and the results show that the global search ability and the convergence speed are both improved compared to the basic optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  2. Clerc, M.: Stagnation analysis in particle swarm optimisation or what happens when nothing happens (2006)

    Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  4. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  5. Fan, H.: Study on Vmax of particle swarm optimization. In: 2001 Proceedings of the Workshop on Particle Swarm Optimization (2001)

    Google Scholar 

  6. Fernandes, C.M., Rosa, A.C., Laredo, J.L., Cotta, C., Merelo, J.J.: A study on time-varying partially connected topologies for the particle swarm. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2450–2456. IEEE (2013)

    Google Scholar 

  7. Figueiredo, E.M., Ludermir, T.B.: Effect of the PSO topologies on the performance of the PSO-ELM. In: 2012 Brazilian Symposium on Neural Networks, pp. 178–183. IEEE (2012)

    Google Scholar 

  8. Glerc, M.: Initialisations for particle swarm optimization (2008). http://clerc.maurice.free.fr/pso

  9. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1931–1938. IEEE (1999)

    Google Scholar 

  10. Kennedy, J.: Swarm intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, Boston (2006). https://doi.org/10.1007/0-387-27705-6_6

    Chapter  Google Scholar 

  11. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1671–1676. IEEE (2002)

    Google Scholar 

  12. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm and other optimisers. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 81–88. IEEE (2005)

    Google Scholar 

  13. Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

    Article  Google Scholar 

  14. Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, vol. 201212, no. 34, pp. 281–295 (2013)

    Google Scholar 

  15. Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging. IEEE Trans. Industr. Electron. 55(9), 3447–3460 (2008)

    Article  Google Scholar 

  16. Panda, A., Mallipeddi, R., Das, S.: Particle swarm optimization with a modified learning strategy and blending crossover. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

    Google Scholar 

  17. Richards, M., Ventura, D.: Choosing a starting configuration for particle swarm optimization. In: IEEE International Joint Conference on Neural Networks, vol. 3, pp. 2309–2312 (2004)

    Google Scholar 

  18. dos Santos Coelho, L., Herrera, B.M.: Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear Yo-yo motion system. IEEE Trans. Industr. Electron. 54(6), 3234–3245 (2007)

    Article  Google Scholar 

  19. Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Sun, J., Palade, V., Li, C., Mao, Z., Wu, H. (2019). Hierarchical Competition Framework for Particle Swarm Optimization. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2019. Lecture Notes in Computer Science(), vol 11655. Springer, Cham. https://doi.org/10.1007/978-3-030-26369-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26369-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26368-3

  • Online ISBN: 978-3-030-26369-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics