Skip to main content

Leaf Recognition Based on Capsule Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11643))

Included in the following conference series:

Abstract

Plant is an indispensable part of human life, so it is very important to identify and protect plants. Convolutional neural network is a commonly used neural network for image recognition. However, convolutional neural network has huge defects. In order to avoid the defects of convolutional neural network, this paper adopts a new type of neural network: capsule neural network to complete plant leaf recognition. The experiment shows that the capsule neural network has a more effective recognition rate than the common neural network in plant leaf recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, no. 2 (2017)

    Google Scholar 

  2. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function. arXiv preprint arXiv:1710.05941 (2017)

  3. Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)

    Article  Google Scholar 

  4. Li, B., Huang, D.S.: Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recognit. 41(12), 3813–3821 (2008)

    Article  Google Scholar 

  5. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronic Industry of China, Beijing (1996)

    Google Scholar 

  6. Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008)

    Article  Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural network. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  8. Won, Y., Gader, P.D., Coffield, P.C.: Morphological shared-weight networks with applications to automatic target recognition. IEEE Trans. Neural Netw. 8(5), 1195–1203 (1997)

    Article  Google Scholar 

  9. Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for real world object recognition in biological vision. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_39

    Chapter  MATH  Google Scholar 

  10. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognit Artif Intell. 13(7), 1083–1101 (1999)

    Article  Google Scholar 

  11. Wang, X.-F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515–1531 (2009)

    Article  Google Scholar 

  12. Shang, L., Huang, D.S., Du, J.-X., Zheng, C.-H.: Palmprint recognition using fast ICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13-15), 1782–1786 (2006)

    Article  Google Scholar 

  13. Zhao, Z.-Q., Huang, D.S., Sun, B.-Y.: Human face recognition based on multiple features using neural networks committee. Pattern Recognit. Lett. 25(12), 1351–1358 (2004)

    Article  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  16. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Huang, D.S., Ip, H.H.S., Law, K.C.K., Chi, Z.: Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 16(3), 721–732 (2005)

    Article  Google Scholar 

  18. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  19. Larsson, G., Maire, M., Shakhnarovich, G.: FractalNet: ultra-deep neural networks without residuals, arXiv preprint arXiv:1605.07648 (2016)

  20. Huang, D.S., Zhao, W.-B.: Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms. Appl. Math. Comput. 162(1), 461–473 (2005)

    Article  MathSciNet  Google Scholar 

  21. Huang, D.S.: Application of generalized radial basis function networks to recognition of radar targets. Int. J. Pattern Recognit Artif Intell. 13(6), 945–962 (1999)

    Article  Google Scholar 

  22. Huang, D.S., Ma, S.D.: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J. Intell. Syst. 9(1), 1–38 (1999)

    Article  Google Scholar 

  23. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules (2017)

    Google Scholar 

  24. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3460–3469 (2015)

    Google Scholar 

  25. Van de Sande, K.E., Uijlings, J.R., Gevers, T., Smeulders, A.W.: Segmentation as selective search for object recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1879–1886 (2011)

    Google Scholar 

  26. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision, pp. 391–405 (2014)

    Google Scholar 

  27. Gao, Z., Ruan, J.: Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning. Bioinformatics 33(14), 2097–2105 (2017)

    Article  Google Scholar 

  28. Annala, M., Laurila, K., Lähdesmäki, H., Nykter, M.: A linear model for transcription factor binding affinity prediction in protein binding microarrays. PLoS ONE 6, e20059 (2011)

    Article  Google Scholar 

  29. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Fifteenth International Conference on Machine Learning, pp. 341–349 (1998)

    Google Scholar 

  30. Park, Y., Kellis, M.: Deep learning for regulatory genomics. Nat. Biotechnol. 33, 825–826 (2015)

    Article  Google Scholar 

  31. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Science Foundation of China, Nos. 61672203, 61572447, 61772357, 31571364, 61861146002,61520106006, 61772370, 61702371, 61672382, and 61732012, China Post-doctoral Science Foundation Grant, No. 2017M611619, and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Yuan, CA., Shang, L., Huang, ZK. (2019). Leaf Recognition Based on Capsule Network. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26763-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26762-9

  • Online ISBN: 978-3-030-26763-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics