Skip to main content

A New Hybrid Calibration Method for Robot Manipulators by Combining Model–Based Identification Technique and a Radial Basis Function–Based Error Compensation

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

Abstract

Though the kinematic parameters had been well identified, there are still existing some non-negligible non-geometric error sources such as friction, gear backlash, gear transmission, temperature variation etc. They need to be eliminated to further improve the accuracy of the robotic system. In this paper, a new hybrid calibration method for improving the absolute positioning accuracy of robot manipulators is proposed. The geometric errors and joint deflection errors are simultaneously calibrated by robot model identification technique and a radial basis function neural network is applied for compensating the robot positions errors, which are caused by the non-geometric error sources. A real implementation was performed with Hyundai HH800 robot and a laser tracker to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brisan, C., Hiller, M.: Aspects of calibration and control of PARTNER robots. In: 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, pp. 272–277. IEEE (2006)

    Google Scholar 

  2. Manne, R.: Analysis of two PLS algorithms for multivariate calibration. Chemometr. Intell. Lab. Syst. 2, 187–197 (1987)

    Article  Google Scholar 

  3. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 77, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  4. Hayati, S., Mirmirani, M.: Improving the absolute positioning accuracy of robot manipulators. J. Field Robot. 2, 397–413 (1985)

    Google Scholar 

  5. Hayati, S., Tso, K.S., Roston, G.: Robot geometry calibration. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA. IEEE (1988)

    Google Scholar 

  6. Mooring, B.W., Tang, G.R.: An improved method for identifying the kinematic parameters in a six-axis robot. In: Computers in Engineering Proceedings of the International Computers in Engineering Conference and Exhibit, pp. 79–84. ASME, Las Vegas, Nevada (1984)

    Google Scholar 

  7. Zhuang, H., Roth, Z.S., Hamano, F.: A complete and parametrically continuous kinematic model. IEEE Trans. Robot. Autom. 8, 451–463 (1992)

    Article  Google Scholar 

  8. Zhuang, H., Wang, L.K., Roth, Z.S.: Error-model-based robot calibration using a modified CPC model. Robot. Comput.-Integr. Manuf. 10, 287–299 (1993)

    Article  Google Scholar 

  9. Okamura, K., Park, F.: Kinematic calibration using the product of exponentials formula. Robotica 14(4), 415–421 (1996)

    Article  Google Scholar 

  10. Chen, G., Kong, L., Li, Q., Wang, H., Lin, Z.: Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula. Mech. Mach. Theory 121, 844–856 (2018)

    Article  Google Scholar 

  11. Chen, G., Wang, H., Lin, Z.: Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Trans. Robot. 30(5), 1066–1077 (2014)

    Article  Google Scholar 

  12. Zhou, J., Nguyen, H.N., Kang, H.J.: Simultaneous identification of joint compliance and kinematic parameters of industrial robots. Int. J. Precis. Eng. Manuf. 15(11), 2257–2264 (2014)

    Article  Google Scholar 

  13. Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Robot. Comput.-Integr. Manuf. 27(4), 881–888 (2011)

    Article  Google Scholar 

  14. Lightcap, C., Hamner, S., Schmitz, T., Banks, S.: Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration. IEEE Trans. Robot. 24(2), 452–456 (2008)

    Article  Google Scholar 

  15. Martinelli, A., Tomatis, N., Tapus, A., Siegwart, R.: Simultaneous localization and odometry calibration for mobile robot. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, pp. 1499–1504. IEEE (2004)

    Google Scholar 

  16. Song, Y., Zhang, J., Lian, B., Sun, T.: Kinematic calibration of a 5-DoF parallel kinematic machine. Precis. Eng. 45, 242–261 (2016)

    Article  Google Scholar 

  17. Renders, J.M., Rossignol, E., Becquet, M., Hanus, R.: Kinematic calibration and geometrical parameter identification for robots. IEEE Trans. Robot. Autom. 7(6), 721–732 (1991)

    Article  Google Scholar 

  18. Zhou, J., Kang, H.J.: A hybrid least-squares genetic algorithm–based algorithm for simultaneous identification of geometric and compliance errors in industrial robots. Adv. Mech. Eng. 7(6), 1687814015590289 (2015)

    Google Scholar 

  19. Jiang, Z., Zhou, W., Li, H., Mo, Y., Ni, W., Huang, Q.: A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Trans. Ind. Electron. 65(4), 3337–3345 (2018)

    Article  Google Scholar 

  20. Barati, M., Khoogar, A.R., Nasirian, M.: Estimation and calibration of robot link parameters with intelligent techniques. Iran. J. Electr. Electron. Eng. 7(4), 225–234 (2011)

    Google Scholar 

  21. Xie, X., Li, Z., Wang, G.: Manipulator calibration based on PSO-RBF neural network error model. In: AIP Conference Proceedings, Malang City, Indonesia, p. 020026. AIP Publishing (2018)

    Google Scholar 

  22. Jang, J.H., Kim, S.H., Kwak, Y.K.: Calibration of geometric and non-geometric errors of an industrial robot. Robotica 19(3), 311–321 (2001)

    Article  Google Scholar 

  23. Tao, P.Y., Yang, G.: Calibration of industrial robots with product-of-exponential (POE) model and adaptive neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, pp. 1448–1454. IEEE, May 2015

    Google Scholar 

  24. Kluk, P., Misiurski, G., Morawski, R.Z.: Total least squares versus RBF neural networks in static calibration of transducers. In: IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings, Ottawa, Ontario, Canada, pp. 424–427. IEEE (1997)

    Google Scholar 

  25. Liao, W.H., Aggarwal, J.K.: Curve and surface interpolation using rational radial basis functions. In: Proceedings of 13th International Conference on Pattern Recognition, Vienna, Austria, pp. 8–13. IEEE (1996)

    Google Scholar 

  26. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the 2019 Research fund of University of Ulsan, Ulsan, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, PN., Kang, HJ. (2019). A New Hybrid Calibration Method for Robot Manipulators by Combining Model–Based Identification Technique and a Radial Basis Function–Based Error Compensation. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics