Skip to main content

A Survey on Deep Learning in Electromyographic Signal Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Abstract

In the recent past Deep Learning (DL) has been used to develop intelligent systems that perform surprisingly well in a large variety of tasks, e.g. image recognition, machine translation, and self-driving cars. The huge improvement of the elaboration hardware and the growing need of big data processing have boosted the DL research in several fields. Recently, physiological signal processing has taking advantage of deep learning as well. In particular, the number of studies concerning the analysis of electromyographic (EMG) signals with DL methods is exponentially raising. This phenomenon is mainly explained by both the existing limitation of the myoelectric controlled prostheses and the recent publication of big datasets of EMG recordings, e.g. Ninapro. Such increasing trend motivated us to search and review recent papers that focus on the processing of EMG signals with DL methods. A comprehensive literature search of papers published between January 2014 and March 2019 was performed referring to the Scopus database. After a full text analysis, 65 papers were selected for the review. The bibliometric research shows four distinct clusters focused on different applications: Hand Gesture Classification; Speech and Emotion Classification; Sleep Stage Classification; Other Applications. As expected, the review process revealed that most of the papers related to DL and EMG signal processing concerns the hand gesture classification, and the convolutional neural network is the most used technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lv, B., Sheng, X., Zhu, X.: Improving myoelectric pattern recognition robustness to electrode shift by autoencoder. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 5652–5655. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/EMBC.2018.8513525

  2. Merletti, R., Farina, D.: Surface Electromyography: Physiology, Engineering and Applications (2016). https://doi.org/10.1002/9781119082934

    Google Scholar 

  3. Farina, D., Falla, D.: Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions. Muscle Nerve (2008). https://doi.org/10.1002/mus.20948

    Article  Google Scholar 

  4. Peppoloni, L., Filippeschi, A., Ruffaldi, E., Avizzano, C.A.: (WMSDs issue) a novel wearable system for the online assessment of risk for biomechanical load in repetitive efforts. Int. J. Ind. Ergon. (2016). https://doi.org/10.1016/j.ergon.2015.07.002

    Article  Google Scholar 

  5. Casadio, M., Morasso, P.G., Sanguineti, V.: Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture (2005). https://doi.org/10.1016/j.gaitpost.2004.05.005

    Article  Google Scholar 

  6. Monaco, V., Ghionzoli, A., Micera, S.: Age-related modifications of muscle synergies and spinal cord activity during locomotion. J. Neurophysiol. (2010). https://doi.org/10.1152/jn.00525.2009

    Article  Google Scholar 

  7. Buongiorno, D., et al.: Assessment and rating of movement impairment in Parkinson’s disease using a low-cost vision-based system. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) Intelligent Computing Methodologies, pp. 777–788. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  8. Cram, J.R.: Biofeedback applications. In: Electromyography (2005). https://doi.org/10.1002/0471678384.ch17

    Chapter  Google Scholar 

  9. Besier, T.F., Lloyd, D.G., Ackland, T.R., Cochrane, J.L.: Anticipatory effects on knee joint loading during running and cutting maneuvers. Med. Sci. Sports Exerc. (2001). https://doi.org/10.1097/00005768-200107000-00015

  10. Buongiorno, D., Barsotti, M., Barone, F., Bevilacqua, V., Frisoli, A.: A linear approach to optimize an EMG-driven neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints. Front. Neurorobot. (2018). https://doi.org/10.3389/fnbot.2018.00074

  11. Buongiorno, D., et al.: A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: IEEE World Haptics Conference, WHC 2015 (2015). https://doi.org/10.1109/WHC.2015.7177725

  12. Buongiorno, D., Sotgiu, E., Leonardis, D., Marcheschi, S., Solazzi, M., Frisoli, A.: WRES: a novel 3 DoF WRist ExoSkeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation. IEEE Robot. Autom. Lett. (2018). https://doi.org/10.1109/LRA.2018.2810943

    Article  Google Scholar 

  13. Stroppa, F., et al.: Real-time 3D tracker in robot-based neurorehabilitation. In: Computer Vision for Assistive Healthcare (2018). https://doi.org/10.1016/B978-0-12-813445-0.00003-4

    Chapter  Google Scholar 

  14. Vujaklija, I., Shalchyan, V., Kamavuako, E.N., Jiang, N., Marateb, H.R., Farina, D.: Online mapping of EMG signals into kinematics by autoencoding. J. Neuroeng. Rehabil. 15 (2018). https://doi.org/10.1186/s12984-018-0363-1

  15. Buongiorno, D., Barone, F., Solazzi, M., Bevilacqua, V., Frisoli, A.: A linear optimization procedure for an EMG-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton control. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2016). https://doi.org/10.1007/978-3-319-42324-1_22

    Chapter  Google Scholar 

  16. Buongiorno, D., et al.: Evaluation of a pose-shared synergy-based isometric model for hand force estimation: towards myocontrol. In: Biosystems and Biorobotics (2017). https://doi.org/10.1007/978-3-319-46669-9_154

    Google Scholar 

  17. Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobot. 10 (2016). https://doi.org/10.3389/fnbot.2016.00009

  18. Geethanjali, P.: Myoelectric control of prosthetic hands: state-of-the-art review (2016). https://doi.org/10.2147/MDER.S91102

    Article  Google Scholar 

  19. Bevilacqua, V., et al.: A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks (2014). https://doi.org/10.1109/IJCNN.2014.6889955

  20. Bevilacqua, V., et al.: Advanced classification of Alzheimer’s disease and healthy subjects based on EEG markers. In: Proceedings of the International Joint Conference on Neural Networks (2015). https://doi.org/10.1109/IJCNN.2015.7280463

  21. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  22. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Sig. Process. Mag. 29, 82–97 (2012)

    Article  Google Scholar 

  23. Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.: Computer vision and deep learning techniques for Pedestrian detection and tracking: a survey. Neurocomputing (2018). https://doi.org/10.1016/j.neucom.2018.01.092

    Article  Google Scholar 

  24. Bevilacqua, V., et al.: A Novel deep learning approach in haematology for classification of leucocytes. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Quantifying and Processing Biomedical and Behavioral Signals, pp. 265–274. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-95095-2_25

    Chapter  Google Scholar 

  25. Bevilacqua, V., et al.: Retinal fundus biometric analysis for personal identifications. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2008). https://doi.org/10.1007/978-3-540-85984-0_147

  26. Bevilacqua, V., et al.: A supervised CAD to support telemedicine in hematology. In: Proceedings of the International Joint Conference on Neural Networks (2015). https://doi.org/10.1109/IJCNN.2015.7280464

  27. Ganapathy, N., Swaminathan, R., Deserno, T.M.: Deep learning on 1-D biosignals: a taxonomy-based survey. Yearb. Med. Inform. 27, 98–109 (2018). https://doi.org/10.1055/s-0038-1667083

    Article  Google Scholar 

  28. Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Programs Biomed. 161, 1–13 (2018)

    Article  Google Scholar 

  29. Park, K.-H., Lee, S.-W.: Movement intention decoding based on deep learning for multiuser myoelectric interfaces. In: 4th International Winter Conference on Brain-Computer Interface, BCI 2016. Institute of Electrical and Electronics Engineers Inc. (2016)

    Google Scholar 

  30. Geng, W., Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M.: A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE 13, e0206049 (2018)

    Article  Google Scholar 

  31. Xu, L., Chen, X., Cao, S., Zhang, X., Chen, X.: Feasibility study of advanced neural networks applied to sEMG-based force estimation. Sensors (Switzerland) 18, 3226 (2018). https://doi.org/10.3390/s18103226

    Article  Google Scholar 

  32. Xie, B., Li, B., Harland, A.: movement and gesture recognition using deep learning and wearable-sensor technology. In: ACM International Conference Proceeding Series, pp. 26–31. Association for Computing Machinery (2018). https://doi.org/10.1145/3268866.3268890

  33. Wangshow, W., Chen, B., Xia, P., Hu, J., Peng, Y.: Sensor fusion for myoelectric control based on deep learning with recurrent convolutional neural networks. Artif. Organs 42, E272–E282 (2018)

    Article  Google Scholar 

  34. Zhengyi, L., Hui, Z., Dandan, Y., Shuiqing, X.: Multimodal deep learning network based hand ADLs tasks classification for prosthetics control. In: Proceedings of 2017 International Conference on Progress in Informatics and Computing, PIC 2017, pp. 91–95. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/PIC.2017.8359521

  35. Zia Ur Rehman, M., Gilani, S.O., Waris, A., Niazi, I.K., Kamavuako, E.N.: A novel approach for classification of hand movements using surface EMG signals. In: 2017 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2017, pp. 265–269. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  36. Ibrahim, M.F.I., Al-Jumaily, A.A.: Auto-encoder based deep learning for surface electromyography signal processing. Adv. Sci. Technol. Eng. Syst. 3, 94–102 (2018). https://doi.org/10.25046/aj030111

    Article  Google Scholar 

  37. Sosin, I., Kudenko, D., Shpilman, A.: Continuous gesture recognition from sEMG sensor data with recurrent neural networks and adversarial domain adaptation. In: 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018. pp. 1436–1441. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  38. He, Y., Fukuda, O., Bu, N., Okumura, H., Yamaguchi, N.: Surface EMG pattern recognition using long short-term memory combined with multilayer perceptron. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5636–5639 (2018)

    Google Scholar 

  39. Shim, H.-M., Lee, S.: Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience. J. Cent. South Univ. 22, 1801–1808 (2015). https://doi.org/10.1007/s11771-015-2698-0

    Article  Google Scholar 

  40. Shim, H.-M., An, H., Lee, S., Lee, E.H., Min, H.-K., Lee, S.: EMG pattern classification by split and merge deep belief network. Symmetry (Basel) 8 (2016). https://doi.org/10.3390/sym8120148

    Article  MathSciNet  Google Scholar 

  41. Wand, M., Schmidhuber, J.: Deep neural network frontend for continuous EMG-based speech recognition. In: Morgan, N., Georgiou, P., Morgan, N., Narayanan S., Metze, F. (ed.) Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, pp. 3032–3036. International Speech and Communication Association (2016)

    Google Scholar 

  42. Morikawa, S., Ito, S.-I., Ito, M., Fukumi, M.: Personal authentication by lips EMG using dry electrode and CNN. In: Proceedings - 2018 IEEE International Conference on Internet of Things and Intelligence System, IOTAIS 2018, pp. 180–183. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/IOTAIS.2018.8600859

  43. Abtahi, F., Ro, T., Li, W., Zhu, Z.: Emotion analysis using audio/video, EMG and EEG: a dataset and comparison study. In: Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, pp. 10–19. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  44. Hassan, M.M., Alam, M.G.R., Uddin, M.Z., Huda, S., Almogren, A., Fortino, G.: Human emotion recognition using deep belief network architecture. Inf. Fusion 51, 10–18 (2019). https://doi.org/10.1016/j.inffus.2018.10.009

    Article  Google Scholar 

  45. Chambon, S., Galtier, M.N., Arnal, P.J., Wainrib, G., Gramfort, A.: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 758–769 (2018). https://doi.org/10.1109/TNSRE.2018.2813138

    Article  Google Scholar 

  46. Andreotti, F., Phan, H., Cooray, N., Lo, C., Hu, M.T.M., De Vos, M.: Multichannel sleep stage classification and transfer learning using convolutional neural networks. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 171–174. Institute of Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/EMBC.2018.8512214

  47. Yulita, I.N., Fanany, M.I., Arymurthy, A.M.: Combining deep belief networks and bidirectional long short-term memory case study: sleep stage classification. In: Rahmawan H. Facta M., R.M.A.S.D. (ed.) International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). Institute of Advanced Engineering and Science (2017)

    Google Scholar 

  48. Su, Y., Sun, S., Ozturk, Y., Tian, M.: Measurement of upper limb muscle fatigue using deep belief networks. J. Mech. Med. Biol. 16, 1640032 (2016)

    Article  Google Scholar 

  49. Xia, P., Hu, J., Peng, Y.: EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif. Organs 42, E67–E77 (2018). https://doi.org/10.1111/aor.13004

    Article  Google Scholar 

  50. Ben Said, A., Mohamed, A., Elfouly, T., Harras, K., Wang, Z.J.: Multimodal deep learning approach for joint EEG-EMG data compression and classification. In: IEEE Wireless Communications and Networking Conference, WCNC. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/WCNC.2017.7925709

  51. Bakiya, A., Kamalanand, K., Rajinikanth, V., Nayak, R.S., Kadry, S.: Deep neural network assisted diagnosis of time-frequency transformed electromyograms. Multimed. Tools Appl. 2018, 1–17 (2018)

    Google Scholar 

  52. Sengur, A., Gedikpinar, M., Akbulut, Y., Deniz, E., Bajaj, V., Guo, Y.: DeepEMGNet: an application for efficient discrimination of ALS and normal EMG signals. Adv. Intell. Syst. Comput. 644, 619–625 (2018)

    Google Scholar 

  53. Chen, J., Zhang, X., Cheng, Y., Xi, N.: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks. Biomed. Sig. Process. Control 40, 335–342 (2018)

    Article  Google Scholar 

  54. Rane, L., Ding, Z., McGregor, A.H., Bull, A.M.J.: Deep learning for musculoskeletal force prediction. Ann. Biomed. Eng. 47, 778–789 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Italian project RoboVir within the BRIC INAIL-2016 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buongiorno, D., Cascarano, G.D., Brunetti, A., De Feudis, I., Bevilacqua, V. (2019). A Survey on Deep Learning in Electromyographic Signal Analysis. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics