Abstract
Differential equations describing the rotation of a rigid body with a fixed point under the influence of forces generated by the Barnett–London effect are analyzed. They are a multiparametric system of equations. A technique for finding their linear invariant manifolds is proposed. With this technique, we find the linear invariant manifolds of codimension 1 and use them in the qualitative analysis of the equations. Computer algebra tools are applied to obtain the invariant manifolds and to analyze the equations. These tools proved to be essential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnett, S.J.: Magnetization by rotation. Phys. Rev. 6(4), 239–270 (1915)
Egarmin, I.E.: On the magnetic field of a rotating superconducting body. In: Aerophysics and Geocosmic Research. Izd. MOTI, Moscow, pp. 95–96 (1983). (in Russian)
Everitt, C.W.F., et al.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)
Urman, Y.M.: Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field. Tech. Phys. 43(8), 885–889 (1998)
Samsonov, V.A.: On the rotation of a rigid body in a magnetic field. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 4, 32–34 (1984). (in Russian)
Kozlov, V.V.: To the problem of the rotation of a rigid body in a magnetic field. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 6, 28–33 (1985). (in Russian)
Gorr, G.V.: A linear invariant relation in the problem of the motion of a gyrostat in a magnetic field. J. Appl. Math. Meth. 61(4), 549–552 (1997)
Hess, W.: Über die Euler’schen Bewegungsgleichungen und über eine neue partikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt. Math. Ann. 37(2), 153–181 (1890)
Irtegov, V., Titorenko, T.: On stationary motions of the generalized kowalewski gyrostat and their stability. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 210–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_16
Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected Works, USSR Acad. Sci., Moscow-Leningrad. 1, 276–319 (1954). (in Russian)
Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software package for finding and stability analysis of stationary sets. Certificate of State Registration of Software Programs. FGU-FIPS. No. 2011615235 (2011)
Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Irtegov, V., Titorenko, T. (2019). On Linear Invariant Manifolds in the Generalized Problem of Motion of a Top in a Magnetic Field. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-26831-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26830-5
Online ISBN: 978-3-030-26831-2
eBook Packages: Computer ScienceComputer Science (R0)