Skip to main content

CCA-Secure Leakage-Resilient Identity-Based Key-Encapsulation from Simple (Not \(\mathtt {q}\)-type) Assumptions

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11689))

Included in the following conference series:

Abstract

In this paper, we propose a new leakage-resilient identity-based encryption (IBE) scheme that is secure against chosen-ciphertext attacks (CCA) in the bounded memory leakage model. It is the first CCA-secure leakage-resilient IBE scheme which does not depend on \(\mathtt {q}\)-type assumptions. More precisely, it is secure under the DLIN assumption for symmetric bilinear groups and under the XDLIN assumption for asymmetric bilinear groups, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_3

    Chapter  Google Scholar 

  2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6

    Chapter  MATH  Google Scholar 

  4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3

    Chapter  MATH  Google Scholar 

  5. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510 (2010)

    Google Scholar 

  6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  7. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_1

    Chapter  Google Scholar 

  8. Chow, S.S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: ACM CCS, pp. 152–161 (2010)

    Google Scholar 

  9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520 (2010)

    Google Scholar 

  10. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)

    Google Scholar 

  11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret. Appl. Math. 156(16), 3113–3121 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  15. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys. In: USENIX, pp. 45–60 (2008)

    Google Scholar 

  16. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_8

    Chapter  Google Scholar 

  17. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_2

    Chapter  Google Scholar 

  18. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_41

    Chapter  Google Scholar 

  19. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsulation without random oracles. Theor. Comput. Sci. 410(47–49), 5093–5111 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  21. Kurosawa, K., Trieu Phong, L.: Leakage resilient IBE and IPE under the DLIN assumption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 487–501. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_31

    Chapter  MATH  Google Scholar 

  22. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_6

    Chapter  Google Scholar 

  23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  24. Li, J., Teng, M., Zhang, Y., Yu, Q.: A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 59(7), 1066–1075 (2016)

    Article  MathSciNet  Google Scholar 

  25. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16

    Chapter  MATH  Google Scholar 

  26. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2

    Chapter  Google Scholar 

  27. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  28. Qin, B., Chen, K., Liu, S.: Efficient chosen-ciphertext secure public-key encryption scheme with high leakage-resilience. IET Inf. Secur. 9(1), 32–42 (2015)

    Article  Google Scholar 

  29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  30. Sun, S.-F., Gu, D., Liu, S.: Efficient leakage-resilient identity-based encryption with CCA security. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 149–167. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4_9

    Chapter  Google Scholar 

  31. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24

    Chapter  MATH  Google Scholar 

  32. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toi Tomita .

Editor information

Editors and Affiliations

A Proof of Lemmas

A Proof of Lemmas

To complete the proof of Theorem 1, we prove Lemmas 4, 6, 7, and 8.

Lemma 4

We introduce a lemma before proving Lemma 4.

Lemma 5

([19, Claim 6.7]). Let \(0< \rho < 1\) be a real. For a sequence of identities \(\mathbf {id}\in (\mathcal {ID})^{Q+1}\), and \(\mathcal {ABORT}\) be the event that the challenger aborts with added rules in \(\text {Game}_{2}\). For any fixed \(\mathbf {id}\),

$$ \eta _\mathrm {low}\left( 1-\rho \right) \le \Pr [\lnot \mathcal {ABORT}] \le \eta _\mathrm {low}\left( 1+\rho \right) . $$

Proof

(of Lemma 4). For a sequence of identities \(\mathbf {id}\in (\mathcal {ID})^{Q+1}\), we define \(\mathcal {Q}(\mathbf {id})\) as the event that \(\mathsf {A}\) uses the last entry in \(\mathbf {id}\) as the challenge and makes key generation queries and decapsulation queries for the remaining identities. Then, we have \(\sum _{\mathbf {id}\in (\mathcal {ID})^{Q+1}}\Pr [\mathcal {Q}(\mathbf {id})] = 1\). Let \(\delta (\mathbf {id}) = \Pr [\lnot \mathcal {ABORT}]\), and \(\delta _\mathrm {low}\) and \(\delta _\mathrm {up}\) be reals such that \(\delta _\mathrm {low}\le \delta (\mathbf {id}) \le \delta _\mathrm {up}\). Then, we have

The last inequality above follows from Lemma 3, since we have

and

From Lemma 5, we have \(\delta _\mathrm {up}- \delta _\mathrm {low}\le \eta _\mathrm {low}\rho /2\). Therefore, defining , we obtain

   \(\square \)

Lemma 6

For any PPT algorithm \(\mathsf {A}\), there exists a PPT algorithm \(\mathsf {D}\) such that

(17)

Proof

Let be an XDLIN instance, where

$$\begin{aligned} \mathbf {A}&= \begin{pmatrix} a_1 &{} 0 &{} 1 \\ 0 &{} a_2 &{} 1 \end{pmatrix}, \\ \mathbf {y}&= \mathbf {A}^\top \mathbf {r}^*\text { or random}. \end{aligned}$$

Then, we build a PPT algorithm \(\mathsf {D}\) with input \((\left[ \mathbf {A} \right] _1,\left[ \mathbf {A} \right] _2,\left[ \mathbf {y} \right] _1)\) that simulates the IND-ID-lrCCA game with \(\mathsf {A}\) as follows.

  • Setup phase: \(\mathsf {D}\) generates \(\mathrm { pp }= \left( \left[ \mathbf {A} \right] _1,\left[ \mathbf {B}_0 \right] _1,\left[ \mathbf {B}_1 \right] _1,\ldots ,\left[ \mathbf {B}_m \right] _1,\left[ \mathbf {D} \right] _1\right) \) as same as the challenger, except that \(\mathsf {D}\) computes

    $$\begin{aligned} \left[ \mathbf {B}_0 \right] _1&= \left[ \mathbf {A} \mathbf {R}_0 + \mathbf {I}_2 \right] _1, \\ \left[ \mathbf {B}_i \right] _1&= \left[ \mathbf {A} \mathbf {R}_i + h_i \mathbf {I}_2 \right] _1 \text { for } i = 1,\ldots ,m, \\ \left[ \mathbf {D} \right] _1&= \left[ \mathbf {A} \mathbf {E} \right] _1. \end{aligned}$$

    Finally \(\mathsf {D}\) sends \(\mathrm { pp }\) to \(\mathsf {A}\).

  • Query phase: \(\mathsf {D}\) answers for each query from \(\mathsf {A}\) as follows.

    • Key Generation query \(\mathrm { id }\). Assume that \(\beta _h(\mathrm { id }) \ne 0\). \(\mathsf {D}\) chooses at random, computes such that \(\left[ \beta _h(\mathrm { id }) \mathbf {S}'' \right] _2 = \left[ -\mathbf {A}\mathbf {S}' + \mathbf {A}\mathbf {E} \right] _2\), sets

      $$ \left[ \mathbf {S}_\mathrm { id } \right] _2 = \left[ \begin{pmatrix} \mathbf {S}' - \mathbf {R}_\mathrm { id }\mathbf {S}'' \\ \mathbf {S}' \end{pmatrix} \right] _2, $$

      and returns \(\mathrm { sk }_\mathrm { id }= \left[ \mathbf {S}_\mathrm { id } \right] _2\) to \(\mathsf {A}\).

    • Leakage query \((\mathrm { id }, f)\) and decapsulation query \((\mathrm { id }, \mathrm { ct })\). If \(\beta _h(\mathrm { id }) \ne 0\), then \(\mathsf {D}\) can generate \(\mathrm { sk }_\mathrm { id }\) as above. Furthermore, even in that case that \(\beta _h(\mathrm { id }) = 0\) (i.e., \(\mathrm { id }=\mathrm { id }^*\)), \(\mathsf {D}\) can generate \(\mathrm { sk }_\mathrm { id }\) by computing \(\mathbf {S}_\mathrm { id }\) such that . Thus, \(\mathsf {D}\) can answer \(f(\mathrm { sk }_\mathrm { id })\) and \(\mathsf {Decap}(\mathrm { sk }_\mathrm { id }, \mathrm { ct })\) for any identity.

  • Challenge phase: \(\mathsf {D}\) generates the challenge \((\mathrm { ct }^*,K_b^*) = \left( (\left[ \mathbf {c}^* \right] _1,\left[ k_a \right] _T,\mathrm { sd }),K_b^*\right) \) as same as the challenger, except that \(\mathsf {D}\) computes

    $$ \left[ \mathbf {c}^* \right] _1 = \left[ \begin{pmatrix} \mathbf {y} \\ \mathbf {R}_{\mathrm { id }^*}^\top \mathbf {y} \end{pmatrix} \right] _1 $$

    instead of \(\left[ \mathbf {c}^* \right] _1 = \left[ \mathbf {F}_{\mathrm { id }^*}^\top \mathbf {r} \right] _1\). Then, \(\mathsf {D}\) returns \((\mathrm { ct }^*,K_b^*)\) to \(\mathsf {A}\).

Finally, \(\mathsf {D}\) outputs \(\gamma = [b = b']\) where is the output of \(\mathsf {A}\).

We will show that the distribution of \((\mathrm { ct }^*, K_b^*)\) is the same as the challenge in \(\text {Game}_{4}\) if \(\mathbf {y} = \mathbf {A}^\top \mathbf {r}^*\), while if \(\mathbf {y}\) is a random it is the same as that in \(\text {Game}_{5}\) with overwhelming probability. First suppose that \(\mathbf {y} = \mathbf {A}^\top \mathbf {r}^*\). In this case,

showing that \((\mathrm { ct }^*, K_b^*)\) is the challenge in \(\text {Game}_{4}\). Next suppose that \(\mathbf {y}\) is random in . It suffices to prove that is also random in even given \(\mathbf {A}\), , and \(\mathbf {y}\). It is easy to see that

$$\begin{aligned} \begin{pmatrix} \mathbf {U} \\ \mathbf {z}^\top \end{pmatrix} = \underbrace{\begin{pmatrix} \mathbf {A} \\ \mathbf {y}^\top \end{pmatrix}}_\mathbf {V}\mathbf {R}_{\mathrm { id }^*}. \end{aligned}$$

Therefore, \(\mathbf {z}\) is random because \(\mathbf {V}\) is of full rank with probability \(1-1/q\). Hence, \(\left[ \mathbf {c}^* \right] _1\) is random as expected.

Thus, \(\text {Game}_{4}\) and \(\text {Game}_{5}\) are indistinguishable under the XDLIN assumption, so that we have Eq. (17).    \(\square \)

Lemma 7

(18)

Proof

We assume that all decapsulation queries are made after the challenge phase, but a similar (but slight simpler) argument can be used if \(\mathsf {A}\) makes queries before the challenge phase. Suppose that \((\mathrm { id }^*,\mathrm { ct }= (\left[ \mathbf {c} \right] _1,\left[ t \right] _T,\mathrm { sd }))\) is the first decapsulation query such that \(\mathrm { id }= \mathrm { id }^*\) and the condition at line 13 in Fig. 1 is evaluated. Let , where . Then, we have

where \(k_a\) is computed at line 11 in Fig. 1. From the supposition, we can assume that \(\alpha \ne \alpha ^*\), \(\mathbf {c}^*\) is chosen uniformly at random, and \(\left[ \mathbf {c} \right] _1\) is invalid for \(\mathrm { id }^*\). Hence, the matrix \(\mathbf {M}\) is of full rank with probability at least \(1-1/q\), that implies that the distribution of \(k_a\) is random and independent from \(\mathbf {D}\) and \(k_a^*\). In addition to \(\mathbf {D}\) and \(k_a^*\), \(\mathsf {A}\) knows at most \(\ell \) bit leakage and n bit challenge session key \(K_b^*\) that is probable to provide information on the value of \(k_a\) to \(\mathsf {A}\). Let \(K_a\), F, and I denote random variables induced by \(k_a\), , and \(({\mathbf D}, k_a^*)\), respectively. Given \(k_a\), , and \(({\mathbf D}, k_a^*)\) that \(\mathsf {A}\) knows, we have

$$ \tilde{H}_\infty (K_a \mid F, I) \ge \tilde{H}_\infty (K_a \mid I) - (\ell + n) = \log _2{q} - \ell - n $$

from Lemma 1 and the above discussion. Thus, for any \(k_a\), we have \(\Pr [K_a=k_a] \le 2^{\ell +n}/q\). Therefore, in the first evaluation of line 11, the condition \(t=k_a\) is satisfied with probability at most \({2^{\ell +n}}/{q}\). Now assuming \(t=k_a\) is not satisfied, the number of possible \(k_a\) decreases one. So, in the i-th evaluation of line 11, the probability that \(t=k_a\) holds is at most \(2^{\ell +n}/(q-i+1)\), in the case that \(t=k_a\) is not satisfied in all previous evaluations. From the above discussion, we have

From Eq. (2), we obtain Eq. (18).    \(\square \)

Lemma 8

(19)

Proof

In \(\text {Game}_{9}\), the challenger returns \(\bot \) to \(\mathsf {A}\) at line 13 in Fig. 1. Hence, \(\mathsf {A}\) does not learn any information on \(k_s^*\) via the decapsulation oracle, since \(\mathsf {A}\) can only get decapsulation results of valid ciphertexts. Now, \(\mathsf {A}\) knows \(\mathbf {D}\), \(k_a^*\), and as information about \(k_s^*\). Then, we show that the min-entropy of \(k_s^*\) is at least \(\log _2{q} - \ell \) with probability at least \(1-1/q\).

First, we have

$$\begin{aligned} k_s^*= {\mathbf {c}^*}^\top \mathbf {s}_1^*, \end{aligned}$$

and then

The matrix \(\mathbf {N}\) is of full rank with probability at least \(1-1/q\), since \(\alpha ^*\ne 0\) and \(\left[ \mathbf {c}^* \right] _1\) is uniformly at random. Then, the distribution of \(k_s^*\) is random and independent from \(\mathbf {D}\) and \(k_a^*\). In addition to \(\mathbf {D}\) and \(k_a^*\), \(\mathsf {A}\) knows at most \(\ell \) bit leakage that is probable to provide information on the value of \(k_s^*\) to \(\mathsf {A}\). Let \(K_a\), D, and F denote random variables induced by \(k_s^*\), \((\mathbf {D},k_a^*)\), and respectively. Given \(k_s^*\), \((\mathbf {D},k_a^*)\), and that \(\mathsf {A}\) knows, we have

$$\begin{aligned} \tilde{H}_\infty (K_s^*\mid D,F)&\ge \tilde{H}_\infty (K_s^*\mid D)- \ell = \log _2{q} - \ell \end{aligned}$$

from Lemma 1 and the discussion when ignoring . Hence \(\mathsf {Ext}(K_s^*, \mathrm { sd }^*)\) is statistically indistinguishable from an n bits random string because \(\mathsf {Ext}\) is a \((\log _2{q} - \ell )\)-randomness extractor. Therefore, we have Eq. (19).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomita, T., Ogata, W., Kurosawa, K. (2019). CCA-Secure Leakage-Resilient Identity-Based Key-Encapsulation from Simple (Not \(\mathtt {q}\)-type) Assumptions. In: Attrapadung, N., Yagi, T. (eds) Advances in Information and Computer Security. IWSEC 2019. Lecture Notes in Computer Science(), vol 11689. Springer, Cham. https://doi.org/10.1007/978-3-030-26834-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26834-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26833-6

  • Online ISBN: 978-3-030-26834-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics