Abstract
In this work we show that the sponge construction can be used to construct quantum-secure pseudorandom functions. As our main result we prove that random sponges are quantum indistinguishable from random functions. In this setting the adversary is given superposition access to the input-output behavior of the construction but not to the internal function. Our proofs hold under the assumption that the internal function is a random function or permutation. We then use this result to obtain a quantum-security version of a result by Andreeva, Daemen, Mennink, and Van Assche (FSE’15) which shows that a sponge that uses a secure PRP or PRF as internal function is a secure PRF. This result also proves that the recent attacks against CBC-MAC in the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can be prevented by introducing a state with a non-trivial inner part.
The proof of our main result is derived by analyzing the joint distribution of any q input-output pairs. Our method analyzes the statistical behavior of the considered construction in great detail. The used techniques might prove useful in future analysis of different cryptographic primitives considering quantum adversaries. Using Zhandry’s PRF/PRP switching lemma we then obtain that quantum indistinguishability also holds if the internal block function is a random permutation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See slide 16 (page 26) of their Crypto 2016 presentation available at https://who.rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf.
References
Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_18
Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: Sponge functions. In: Ecrypt Hash Workshop, May 2007. http://sponge.noekeon.org/SpongeFunctions.pdf
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_11
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed sponge construction. In: Symmetric Key Encryption Workshop, vol. 2011 (2011)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_3
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryption, authentication and authenticated encryption. In: Directions in Authenticated Ciphers (2012)
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: On quantum indifferentiability. Technical report Cryptology ePrint Archive, Report 2018/257 (2018). https://eprint.iacr.org/2018/257
Chang, D.H., Dworkin, M.J., Hong, S., Kelsey, J.M., Nandi, M.: A keyed sponge construction with pseudorandomness in the standard model. In: The Third SHA-3 Candidate Conference, NIST (2012)
Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_9
Czajkowski, J., Hülsing, A., Schaffner, C.: Quantum in-distinguishability of random sponges. Cryptology ePrint Archive, Report 2019/069 (2019). https://eprint.iacr.org/2019/069
Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: tight bounds for keyed sponges and truncated CBC. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 368–387. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_18
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 – efficient short-input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol. 2016(2), 1–29 (2017). https://doi.org/10.13154/tosc.v2016.i2.1-29
Kuwakado, H., Morii, M.: Security on the quantumtype even-mansour cipher. In: 2012 International Symposium on Information Theory and its Applications (ISITA), pp. 312–316. IEEE (2012)
Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_19
Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 367–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_21
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010). 10th anniversary
Rivest, R.L., Schuldt, J.C.N.: Spritz-a spongy RC4-like stream cipher and hash function (2014). Charles River Crypto Day, 24 October 2014
Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. In: arXiv preprint arXiv:1603.07856 (2016)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)
Sphincs+ Team: SPHINCS+ (2017). https://sphincs.org/
Zhandry, M.: How to construct quantum random functions. In: FOCS 2013, pp. 679–687. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.37
Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7&8), 557–567 (2015)
Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. Int. J. Quantum Inf. 13(04), 1550014 (2015)
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. Technical report, Cryptology ePrint Archive, Report 2018/276 (2018). https://eprint.iacr.org/2018/276
Acknowledgments
The authors would like to thank Dominique Unruh and Leon Groot Bruiderink for helpful discussions. CS and JC are supported by a NWO VIDI grant (Project No. 639.022.519).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Czajkowski, J., Hülsing, A., Schaffner, C. (2019). Quantum Indistinguishability of Random Sponges. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-26951-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26950-0
Online ISBN: 978-3-030-26951-7
eBook Packages: Computer ScienceComputer Science (R0)