Abstract
We revisit the concept of non-malleable secret sharing (Goyal and Kumar, STOC 2018) in the computational setting. In particular, under the assumption of one-to-one one-way functions, we exhibit a computationally private, threshold secret sharing scheme satisfying all of the following properties.
-
Continuous non-malleability: No computationally-bounded adversary tampering independently with all the shares can produce mauled shares that reconstruct to a value related to the original secret. This holds even in case the adversary can tamper continuously, for an unbounded polynomial number of times, with the same target secret sharing, where the next sequence of tampering functions, as well as the subset of shares used for reconstruction, can be chosen adaptively based on the outcome of previous reconstructions.
-
Resilience to noisy leakage: Non-malleability holds even if the adversary can additionally leak information independently from all the shares. There is no bound on the length of leaked information, as long as the overall leakage does not decrease the min-entropy of each share by too much.
-
Improved rate: The information rate of our final scheme, defined as the ratio between the size of the message and the maximal size of a share, asymptotically approaches 1 when the message length goes to infinity.
Previous constructions achieved information-theoretic security, sometimes even for arbitrary access structures, at the price of at least one of the following limitations: (i) Non-malleability only holds against one-time tampering attacks; (ii) Non-malleability holds against a bounded number of tampering attacks, but both the choice of the tampering functions and of the sets used for reconstruction is non-adaptive; (iii) Information rate asymptotically approaching zero; (iv) No security guarantee in the presence of leakage.
A. Faonio—Supported by the Spanish Government through the projects Datamantium (ref. RTC-2016-4930-7), SCUM (RTI2018-102043-B-I00), and ERC2018-092822, and by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Secret sharing scheme with a gap between reconstruction and privacy are known in literature as ramp secret sharing scheme.
- 2.
In retrospect, this is the reason why we set the reconstruction/privacy threshold of the underlying TSS to \(\varrho - 3\) (i.e., 2 shares for decoding the non-malleable encoding and \(\varrho - 3 + 1 = \varrho -2\) shares to run the reconstruction procedure of the TSS twice).
- 3.
Clearly, the reduction needs to handle many other cases; however, this particular case is enough to illustrate our technique.
- 4.
These sets typically depend on the security parameter, but we drop this dependency to simplify notation.
- 5.
Observe that “perfect” MU, as opposed to “computational” MU is wlog. in the plain model.
- 6.
- 7.
As for MU, “perfect” SVU, rather than “computational” SVU, is wlog. in the plain model.
- 8.
One can also define a more general notion of information rate for secret sharing schemes [15], which depends on the entropy of the distribution \(\mathbf {M}\) of the input message. The above definition is obtained as a special case, by considering the uniform distribution.
References
Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15
Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing schemes for general access structures. Cryptology ePrint Archive, Report 2018/1147 (2018). https://ia.cr/2018/1147
Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: STOC, pp. 459–468 (2015)
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. SIAM J. Comput. 47(2), 524–546 (2018)
Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report 2017/357 (2017). https://ia.cr/2017/357
Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_17
Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_16
Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 427–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_15
Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. Cryptology ePrint Archive, Report 2018/1144 (2018). https://ia.cr/2018/1144
Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)
Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret sharing with maximal corruptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_3
Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979 National Computer Conference, vol. 48, pp. 313–317 (1979)
Blundo, C., Santis, A.D., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. Theoret. Comput. Sci. 154(2), 283–306 (1996)
Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_10
Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_14
Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. In: STOC, pp. 285–298 (2016)
Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: FOCS, pp. 306–315 (2014)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)
Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations in Theoretical Computer Science, pp. 155–168 (2014)
Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_19
Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)
Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: simpler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_13
Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously non-malleable codes. Cryptology ePrint Archive, Report 2019/055 (2019). https://ia.cr/2019/055
Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_22
Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_9
Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_37
Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520 (2010)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)
Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14
Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in Computer Science, pp. 434–452 (2010)
Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable codes with split-state refresh. In: ACNS, pp. 1–19 (2018)
Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited: graceful degradation, noisy leakage, and construction in the bounded-retrieval model. Theoret. Comput. Sci. 660, 23–56 (2017)
Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting: adaptive tampering, noisy-leakage resilience, and improved rate. Cryptology ePrint Archive, Report 2019/105 (2019). https://ia.cr/2019/105
Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20
Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_7
Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-proof (ATP) security: theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_15
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)
Goyal, V., Jain, A., Khurana, D.: Witness signatures and non-malleable multi-prover zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1095 (2015). http://ia.cr/2015/1095
Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC, pp. 685–698 (2018)
Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17
Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: STOC, pp. 1128–1141 (2016)
HashiCorp: The Vault project. https://www.vaultproject.io/. Accessed 22 Dec 2018
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_11
Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_12
Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryptology ePrint Archive, Report 2018/1138 (2018). https://ia.cr/2018/1138
Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: STOC, pp. 1144–1156 (2017)
Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30
Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J. Comput. 41(4), 772–814 (2012)
Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable codes in the split-state model from minimal assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_21
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85 (1989)
Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: CCS, pp. 172–184 (2007)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004). http://ia.cr/2004/332
Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. Cryptology ePrint Archive, Report 2018/1154 (2018). https://ia.cr/2018/1154
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Faonio, A., Venturi, D. (2019). Non-malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-26951-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26950-0
Online ISBN: 978-3-030-26951-7
eBook Packages: Computer ScienceComputer Science (R0)