Skip to main content

Simultaneous Amplification: The Case of Non-interactive Zero-Knowledge

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11693))

Included in the following conference series:

Abstract

In this work, we explore the question of simultaneous privacy and soundness amplification for non-interactive zero-knowledge argument systems (NIZK). We show that any \(\delta _s-\)sound and \(\delta _z-\)zero-knowledge NIZK candidate satisfying \(\delta _s+\delta _z=1-\epsilon \), for any constant \(\epsilon >0\), can be turned into a computationally sound and zero-knowledge candidate with the only extra assumption of a subexponentially secure public-key encryption.

We develop novel techniques to leverage the use of leakage simulation lemma (Jetchev-Peitzrak TCC 2014) to argue amplification. A crucial component of our result is a new notion for secret sharing \(\mathsf {NP}\) instances. We believe that this may be of independent interest.

To achieve this result we analyze following two transformations:

  • Parallel Repetition: We show that using parallel repetition any \(\delta _s-\)sound and \(\delta _z-\)zero-knowledge \(\mathsf {NIZK}\) candidate can be turned into (roughly) \(\delta ^n_s-\)sound and \(1-(1-\delta _{z})^n-\)zero-knowledge candidate. Here n is the repetition parameter.

  • MPC based Repetition: We propose a new transformation that amplifies zero-knowledge in the same way that parallel repetition amplifies soundness. We show that using this any \(\delta _s-\)sound and \(\delta _z-\)zero-knowledge \(\mathsf {NIZK}\) candidate can be turned into (roughly) \(1-(1-\delta _s)^n-\)sound and \(2\cdot \delta ^n_{z}-\)zero-knowledge candidate.

Then we show that using these transformations in a zig-zag fashion we can obtain our result. Finally, we also present a simple transformation which directly turns any \(\mathsf {NIZK}\) candidate satisfying \(\delta _s,\delta _z<1/3 -1/\mathsf {poly}(\lambda )\) to a secure one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The most important reason to consider this is that it may be easier to construct NIZK with relaxed soundness and zero knowledge requirements. Indeed, in the past, even slight relaxations of zero knowledge, such as \(\epsilon \)-zero knowledge [12], have led to simpler protocols.

  2. 2.

    Formal details can be found in Sect. 5.

References

  1. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptology ePrint Archive 2018, 615 (2018)

    Google Scholar 

  2. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: FOCS, pp. 374–383 (1997)

    Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)

    Google Scholar 

  5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)

    Google Scholar 

  6. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_16

    Chapter  MATH  Google Scholar 

  7. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_2

    Chapter  MATH  Google Scholar 

  8. Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and correlation intractability from circular-secure FHE. IACR Cryptology ePrint Archive 2018, 1248 (2018)

    Google Scholar 

  9. Chen, Y., Chung, K., Liao, J.: On the complexity of simulating auxiliary input. IACR Cryptology ePrint Archive 2018, 171 (2018)

    Google Scholar 

  10. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: FOCS, pp. 42–52 (1988)

    Google Scholar 

  11. Damgård, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious transfer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_5

    Chapter  Google Scholar 

  12. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC, pp. 409–418 (1998)

    Google Scholar 

  13. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations: the state of the art. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation, pp. 406–421 (2011)

    Chapter  Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  15. Goyal, V., Jain, A., Sahai, A.: Simultaneous amplification: the case of non-interactive zero-knowledge. IACR Cryptology ePrint Archive (2019)

    Google Scholar 

  16. Goyal, V., Khurana, D., Mironov, I., Pandey, O., Sahai, A.: Do distributed differentially-private protocols require oblivious transfer? In: ICALP, pp. 29:1–29:15 (2016)

    Google Scholar 

  17. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6

    Chapter  Google Scholar 

  18. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21

    Chapter  Google Scholar 

  19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  20. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_22

    Chapter  Google Scholar 

  21. Håstad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_1

    Chapter  Google Scholar 

  22. Holenstein, T.: Strengthening key agreement using hard-core sets. Ph.D. thesis, ETH Zurich (2006)

    Google Scholar 

  23. Impagliazzo, R., Jaiswal, R., Kabanets, V.: Approximate list-decoding of direct product codes and uniform hardness amplification. SIAM J. Comput. 39(2), 564–605 (2009)

    Article  MathSciNet  Google Scholar 

  24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_38

    Chapter  Google Scholar 

  25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC, pp. 21–30 (2007)

    Google Scholar 

  26. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18

    Chapter  Google Scholar 

  27. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_24

    Chapter  Google Scholar 

  28. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)

    Google Scholar 

  29. Maurer, U.M., Tessaro, S.: A hardcore lemma for computational indistinguishability: security amplification for arbitrarily weak PRGs with optimal stretch. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_15

    Chapter  Google Scholar 

  30. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious transfer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_22

    Chapter  Google Scholar 

  31. Pass, R., Venkitasubramaniam, M.: An efficient parallel repetition theorem for Arthur-Merlin games. In: STOC, pp. 420–429 (2007)

    Google Scholar 

  32. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. IACR Cryptology ePrint Archive 2019, 158 (2019)

    Google Scholar 

  33. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.P.: Dense subsets of pseudorandom sets. In: FOCS, pp. 76–85 (2008)

    Google Scholar 

  34. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J. ACM 50(2), 196–249 (2003). https://doi.org/10.1145/636865.636868

    Article  MathSciNet  MATH  Google Scholar 

  35. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014 (2014)

    Google Scholar 

  36. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_32

    Chapter  Google Scholar 

  37. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_20

    Chapter  Google Scholar 

Download references

Acknowledgements

Aayush Jain would like to thank Ashutosh Kumar and Alain Passelègue for very insightful discussions about simultaneous amplification and in particular how independent zero-knowledge and soundness amplification theorems imply general simultaneous amplification.

Vipul Goyal is supported in part by a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, a JP Morgan Faculty Fellowship, and, a Cylab seed funding award.

Aayush Jain and Amit Sahai are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. Aayush Jain is also supported by a Google PhD fellowship award in Privacy and Security. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C- 0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, the U.S. Government or Google.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aayush Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, V., Jain, A., Sahai, A. (2019). Simultaneous Amplification: The Case of Non-interactive Zero-Knowledge. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11693. Springer, Cham. https://doi.org/10.1007/978-3-030-26951-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26951-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26950-0

  • Online ISBN: 978-3-030-26951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics