Abstract
Is it possible to measure a physical object in a way that makes the measurement signals unintelligible to an external observer? Alternatively, can one learn a natural concept by using a contrived training set that makes the labeled examples useless without the line of thought that has led to their choice? We initiate a study of “cryptographic sensing” problems of this type, presenting definitions, positive and negative results, and directions for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The requirement that \(b<1\) is what rules out the trivial solution where h is just the list of labels for the m points in S and forces actual “learning”.
- 2.
In the case of proper PAC-learning (i.e., when \(\mathcal{H}=\mathcal{F}\)), [18] present a condition (called “closure under exception lists”) on \(\mathcal{F}\) under which PAC still implies OCCAM learning.
References
Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997 (1997)
Alekhnovich, M.: More on average case vs approximation complexity. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS 2003), Cambridge, MA, USA, 11–14 October 2003 (2003)
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Angluin, D., Kharitonov, M.: When won’t membership queries help? (Extended abstract). In: STOC (1991)
Applebaum, B.: Exponentially-hard gap-CSP and local PRG via local hardcore functions. In: FOCS (2017)
Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography. J. ACM 64(2), 10:1–10:74 (2017)
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: ITCS (2017)
Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\({}^{\text{0}}\). In: FOCS (2004)
Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear stretch in NC0. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 260–271. Springer, Heidelberg (2006). https://doi.org/10.1007/11830924_25
Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography by cellular automata or how fast can complexity emerge in nature? In: ICS (2010)
Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011 (2011)
Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. IACR Cryptology ePrint Archive 2006/186 (2006)
Bellare, M., et al.: Hedged public-key encryption: how to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_14
Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_15
Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_24
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf. Process. Lett. 24(6), 377–380 (1987)
Board, R.A., Pitt, L.: On the necessity of Occam algorithms. In: STOC (1990)
Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_19
Bootle, J., Delaplace, C., Espitau, T., Fouque, P., Tibouchi, M.: LWE without modular reduction and improved side-channel attacks against BLISS. IACR Cryptology ePrint Archive 2018/22 (2018, to appear in Asiacrypt 2018)
Bshouty, N.H.: Exact learning via the monotone theory (extended abstract). In: FOCS (1993)
Bshouty, N.H., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 206–218. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46769-6_17
Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom functions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_3
Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy messages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_30
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008 (2008)
Goldreich, O.: Candidate one-way functions based on expander graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 76–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_10
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989 (1989)
Indyk, P.: Sketching via hashing: from heavy hitters to compressed sensing to sparse Fourier transform. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA, 22–27 June 2013 (2013)
Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS (2000)
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC (2008)
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Kannan, S., Mossel, E., Sanyal, S., Yaroslavtsev, G.: Linear sketching over f\_2. In: 33rd Computational Complexity Conference, CCC 2018, San Diego, CA, USA, 22–24 June 2018 (2018)
Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.D.: What can we learn privately? In: FOCS (2008)
Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning Boolean formulae and finite automata. In: STOC (1989)
Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In: STOC (1993)
Klivans, A.R., Servedio, R.A.: Learning DNF in time \({2}^{\tilde{\text{o }}(\text{ n }^{1/3})}\). In: STOC (2001)
Mahloujifar, S., Diochnos, D.I., Mahmoody, M.: Learning under \(p\)-tampering attacks. In: ALT (2018)
McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Network Progress Report 44, 114–116 (1978)
Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2
Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. In: STOC (2003)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008 (2008)
Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)
Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_9
Schapire, R.E.: The strength of weak learnability (extended abstract). In: FOCS (1989)
Valiant, L.G.: A theory of the learnable. In: STOC (1984)
Verbeurgt, K.A.: Learning DNF under the uniform distribution in quasi-polynomial time. In: COLT (1990)
Acknowledgements
We thank Brent Waters for helpful discussions.
Research supported by NSF-BSF grant 2015782. Y. Ishai and E. Kushilevitz were additionally supported by ISF grant 1709/14 and a grant from the Ministry of Science and Technology, Israel and Department of Science and Technology, Government of India. Y. Ishai was additionally supported by ERC Project NTSC (742754). R. Ostrovsky was additionally supported by NSF grant 1619348, DARPA SafeWare subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan Faculty Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. A. Sahai was additionally supported by a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A. (2019). Cryptographic Sensing. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11694. Springer, Cham. https://doi.org/10.1007/978-3-030-26954-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-26954-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26953-1
Online ISBN: 978-3-030-26954-8
eBook Packages: Computer ScienceComputer Science (R0)