Skip to main content

Gene Functional Module Discovery via Integrating Gene Expression and PPI Network Data

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Sparse Singular Value Decomposition (SSVD) model has been proposed to bicluster gene expression data to identify gene modules. However, traditional SSVD model can only handle the gene expression data where no gene-gene interaction information is integrated. Here, we develop a Sparse Network-regularized SVD (SNSVD) method, which can integrate the gene-gene interaction information into the SSVD model, to identify the underlying gene functional modules from the gene expression data. The simulation results on synthetic data show that SNSVD is more effective than the traditional SVD-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, M.S., et al.: Biclustering via sparse singular value decomposition. Biometrics 66(4), 1087–1095 (2010)

    Article  MathSciNet  Google Scholar 

  2. Liquet, B., et al.: Group and sparse group partial least square approaches applied in genomics context. Bioinformatics 32(1), 35–42 (2015)

    MathSciNet  Google Scholar 

  3. Min, W., et al.: A two-stage method to identify joint modules from matched MicroRNA and mRNA expression data. IEEE Trans. Nanobiosci. 15(4), 362–370 (2016)

    Article  Google Scholar 

  4. Eren, K., et al.: A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinform. 14(3), 279–292 (2013)

    Article  Google Scholar 

  5. Sill, M.K., et al.: Robust biclustering by sparse singular value decomposition incorporating stability selection. Bioinformatics 27(15), 2089–2097 (2011)

    Article  Google Scholar 

  6. Oghabian, A., et al.: Biclustering methods: biological relevance and application in gene expression analysis. PLOS One 9(3), e90801 (2014)

    Article  Google Scholar 

  7. Chen, S., Liu, J., Zeng, T.: Measuring the quality of linear patterns in biclusters. Methods 83, 18–27 (2015)

    Article  Google Scholar 

  8. Yang, D., Ma, Z., Buja, A.: Rate optimal denoising of simultaneously sparse and low rank matrices. J. Mach. Learn. Res. 17(1), 3163–3189 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Asteris, M.K., et al.: A simple and provable algorithm for sparse diagonal CCA. In: 33rd International Conference on Machine Learning, New York, NY, USA, pp. 1148–1157 (2016)

    Google Scholar 

  10. Chuang, H., et al.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

    Article  Google Scholar 

  11. Sokolov, A., et al.: Pathway-based genomics prediction using generalized elastic net. PLoS Comput. Biol. 12, 3 (2016)

    Article  Google Scholar 

  12. Hill, S.M., et al.: Inferring causal molecular networks: empirical assessment through a community-based effort. Nat. Methods 13(4), 310–318 (2016)

    Article  Google Scholar 

  13. Glaab, E.: Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification. Brief. Bioinform. 17(3), 440–452 (2016)

    Article  Google Scholar 

  14. Lee, E., et al.: Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, 11 (2008)

    Article  Google Scholar 

  15. Li, C., et al.: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9), 1175–1182 (2008)

    Article  Google Scholar 

  16. Iorio, F., et al.: A landscape of pharmacogenomic interactions in cancer. Cell 166(3), 740–754 (2016)

    Article  Google Scholar 

  17. Cerami, E.G., et al.: Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011)

    Article  Google Scholar 

  18. Bolte, J., et al.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  19. Friedman, J.H., et al.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)

    Article  MathSciNet  Google Scholar 

  20. Fan, J., et al.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  21. Huang, D., et al.: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009)

    Article  Google Scholar 

  22. Leeksma, O.C., et al.: Germline mutations predisposing to diffuse large B-cell lymphoma. Blood Cancer J. 7(2), e532 (2017)

    Article  Google Scholar 

  23. Disis, M.L.: Immune Regulation of Cancer. J. Clin. Oncol. 28(29), 4531–4538 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the National Natural Science Foundation of China 61802157, Youth Project from the Education Department of Jiangxi Province of China GJJ180626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, F., Liu, J., Min, W. (2019). Gene Functional Module Discovery via Integrating Gene Expression and PPI Network Data. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics