Skip to main content

Motif Discovery via Convolutional Networks with K-mer Embedding

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

With the rapid development of deep learning, some discriminative motif discovery methods based on deep neural network are gradually becoming the mainstream, which also bringing huge improvement of prediction accuracy. In this paper, we propose a convolutional neural network based architecture (eCNN), combining embedding layer with GloVe. Firstly, eCNN divides each single sequence of ChIP-seq datasets into multiple subsequences called k-mers by a sliding window, and then encoding k-mers into a relatively low dimension vectors by GloVe, and finally scores each vector using multiple convolutional networks. The experiment shows that our architecture can get good results on the task of motif discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furey, T.S.: ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012)

    Article  Google Scholar 

  2. Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep III, P.W., Bulyk, M.L.: Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429 (2006)

    Article  Google Scholar 

  3. Jothi, R., Cuddapah, S., Barski, A., Cui, K., Zhao, K.: Genome-wide identification of in vivo protein–DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231 (2008)

    Article  Google Scholar 

  4. Stormo, G.D.: Consensus patterns in DNA. Methods Enzymol. 183, 211–221 (1990)

    Article  Google Scholar 

  5. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  6. Zhao, X., Huang, H., Speed, T.P.: Finding short DNA motifs using permuted Markov models. J. Comput. Biol. 12, 894–906 (2005)

    Article  Google Scholar 

  7. Badis, G., et al.: Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009)

    Article  Google Scholar 

  8. Weirauch, M.T., et al.: Evaluation of methods for modeling transcription factor sequence specificity. Nat. Biotechnol. 31, 126 (2013)

    Article  Google Scholar 

  9. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)

    Article  Google Scholar 

  10. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12, 931–934 (2015)

    Article  Google Scholar 

  11. Huang, D.S.: Systematic theory of neural networks for pattern recognition. Publishing House of Electronic Industry of China, Beijing, vol. 201 (1996)

    Google Scholar 

  12. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13, 1083–1101 (1999)

    Article  Google Scholar 

  13. Zeng, H., Edwards, M.D., Liu, G., Gifford, D.K.: Convolutional neural network architectures for predicting DNA–protein binding. Bioinformatics 32, i121–i127 (2016)

    Article  Google Scholar 

  14. Quang, D., Xie, X.: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107–e107 (2016)

    Article  Google Scholar 

  15. Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016)

    Article  Google Scholar 

  16. Hassanzadeh, H.R., Wang, M.D.: DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 178–183 (2017)

    Google Scholar 

  17. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997)

    Article  Google Scholar 

  18. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3460–3469 (2015)

    Google Scholar 

  20. Van de Sande, K.E., Uijlings, J.R., Gevers, T., Smeulders, A.W.: Segmentation as selective search for object recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1879–1886 (2011)

    Google Scholar 

  21. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

  22. Gao, Z., Ruan, J.: Computational modeling of in vivo and in vitro protein-DNA interactions by multiple instance learning. Bioinformatics 33(14), 2097–2105 (2017)

    Article  Google Scholar 

  23. Annala, M., Laurila, K., Lähdesmäki, H., Nykter, M.: A linear model for transcription factor binding affinity prediction in protein binding microarrays. PLoS ONE 6, e20059 (2011)

    Article  Google Scholar 

  24. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: Fifteenth International Conference on Machine Learning, pp. 341–349 (1998)

    Google Scholar 

  25. Park, Y., Kellis, M.: Deep learning for regulatory genomics. Nature Biotechnol. 33, 825–826 (2015)

    Article  Google Scholar 

  26. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  27. Shen, Z., Bao, W.-Z., Huang, D.S.: Recurrent neural network for predicting transcription factor binding sites. Sci. Rep. 8, 15270 (2018)

    Google Scholar 

  28. Zhang, H., Zhu, L., Huang, D.S.: DiscMLA: an efficient discriminative motif learning algorithm over high-throughput datasets. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(6), 1810–1820 (2018)

    Article  Google Scholar 

  29. Guo, W.-L., Huang, D.S.: An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency. Mol. BioSyst. 13(9), 1827–1837 (2017). https://doi.org/10.1039/c7mb00155j

    Article  Google Scholar 

  30. Shen, Z., Zhang, Y.-H., Han, K., Nandi, A.K., Honig, B., Huang, D.S.: miRNA-disease association prediction with collaborative matrix factorization. Complexity 2017(2017), 1–9 2017

    Article  MathSciNet  Google Scholar 

  31. Yuan, L., Yuan, C.-A., Huang, D.S.: FAACOSE: a fast adaptive ant colony optimization algorithm for detecting SNP epistasis. Complexity 2017(2017), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  32. Yuan, L., et al.: Nonconvex penalty based low-rank representation and sparse regression for eQTL mapping. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(5), 1154–1164 (2017)

    Article  Google Scholar 

  33. Deng, S.-P., Cao, S., Huang, D.S., Wang, Y.-P.: Identifying stages of kidney renal cell carcinoma by combining gene expression and DNA methylation data. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(5), 1147–1153 (2017)

    Article  Google Scholar 

  34. Jiang, W., Huang, D.S., Li, S.: Random-walk based solution to triple level stochastic point location problem. IEEE Trans. Cybern. 46(6), 1438–1451 (2016)

    Article  Google Scholar 

  35. Deng, S.-P., Zhu, L., Huang, D.S.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(1), 27–35 (2016)

    Article  Google Scholar 

  36. Deng, S.-P., Huang, D.S.: An integrated strategy for functional analysis of microbial communities based on gene ontology and 16S rRNA gene. Int. J. Data Min. Bioinform. (IJDMB) 13(1), 63–74 (2015)

    Article  MathSciNet  Google Scholar 

  37. Deng, S.-P., Zhu, L., Huang, D.S.: Mining the bladder cancer-associated genes by an integrated strategy for the construction and analysis of differential co-expression networks. BMC Genomics 16(Suppl 3), S4 (2015)

    Article  Google Scholar 

  38. Deng, S.-P., Huang, D.S.: SFAPS: an R package for structure/function analysis of protein sequences based on informational spectrum method. Methods 69(3), 207–212 (2014)

    Article  Google Scholar 

  39. Huang, D.S., Zhang, L., Han, K., Deng, S., Yang, K., Zhang, H.: Prediction of protein-protein interactions based on protein-protein correlation using least squares regression. Curr. Protein Pept. Sci. 15(6), 553–560 (2014)

    Google Scholar 

  40. Huang, D.S., Yu, H.-J.: Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(2), 457–467 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Science Foundation of China, Nos. 61861146002, 61520106006, 61772370, 61873270, 61702371, 61672382, 61672203, 61572447, 61772357, and 61732012, China Post-doctoral Science Foundation Grant, No. 2017M611619, and supported by “BAGUI Scholar” Program and the Scientific & Technological Base and Talent Special Program, GuiKe AD18126015 of the Guangxi Zhuang Autonomous Region of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dailun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D., Zhang, Q., Yuan, CA., Qin, X., Huang, ZK., Shang, L. (2019). Motif Discovery via Convolutional Networks with K-mer Embedding. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics