Skip to main content

A Decomposition-Based Hybrid Estimation of Distribution Algorithm for Practical Mean-CVaR Portfolio Optimization

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

This paper addresses a practical mean-CVaR portfolio optimization problem, which maximizes mean return and minimizes CVaR. Since the practical constraints are considered, the problem is proved to be NP-hard. To solve this complex problem, we decompose it into an asset selection problem and a proportion allocation problem. For the asset selection problem, an estimation of distribution algorithm (EDA) is developed to determine which assets are included in the portfolio. Once the asset selection is fixed in each generation of the EDA, the proportion of each asset is determined by solving the proportion allocation problem using the linear programming. To guarantee the diversity of the obtained solutions, the probability model (PM) is divided into a set of sub-PMs according to the decomposition of the objective space. A knowledge-based initialization and a cooperation-based local search are designed to improve the solutions obtained in the initialization stage and the search process, respectively. The proposed decomposition-based hybrid EDA (DHEDA) is tested on real-world datasets and compared with an existing algorithm. Numerical results demonstrate the effectiveness and efficiency of the DHEDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markowitz, H.: Portfolio selection. J. Financ. 7, 77–91 (1952)

    Google Scholar 

  2. Ertenlice, O., Kalayci, C.B.: A survey of swarm intelligence for portfolio optimization: algorithms and applications. Swarm Evol. Comput. 39, 36–52 (2018)

    Article  Google Scholar 

  3. Lwin, K.T., Qu, R., MacCarthy, B.L.: Mean-VaR portfolio optimization: a nonparametric approach. Eur. J. Oper. Res. 260, 751–766 (2017)

    Article  MathSciNet  Google Scholar 

  4. Righi, M.B., Borenstein, D.: A simulation comparison of risk measures for portfolio optimization. Financ. Res. Lett. 24, 105–112 (2018)

    Article  Google Scholar 

  5. Alexander, G.J., Baptista, A.M.: A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Manage. Sci. 50, 1261–1273 (2004)

    Article  Google Scholar 

  6. Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev, S.P. (ed.) Probabilistic Constrained Optimization. NOIA, vol. 49, pp. 272–281. Springer, Boston, MA (2000). https://doi.org/10.1007/978-1-4757-3150-7_15

    Chapter  Google Scholar 

  7. Alexander, S., Coleman, T.F., Li, Y.: Minimizing CVaR and VaR for a portfolio of derivatives. J. Bank Financ. 30, 583–605 (2006)

    Article  Google Scholar 

  8. Takano, Y., Nanjo, K., Sukegawa, N., Mizuno, S.: Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs. Comput. Manag. Sci. 12, 319–340 (2015)

    Article  MathSciNet  Google Scholar 

  9. Najafi, A.A., Mushakhian, S.: Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs. Appl. Math. Comput. 256, 445–458 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Qin, Q., Li, L., Cheng, S.: A novel hybrid algorithm for Mean-CVaR portfolio selection with real-world constraints. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014. LNCS, vol. 8795, pp. 319–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11897-0_38

    Chapter  Google Scholar 

  11. Cheng, R., Gao, J.: On cardinality constrained mean-CVaR portfolio optimization. In: The 27th Chinese Control and Decision Conference, pp. 1074–1079. IEEE, Qingdao (2015)

    Google Scholar 

  12. Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio optimization problems. Comput. Manag. Sci. 8, 259–279 (2011)

    Article  MathSciNet  Google Scholar 

  13. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Springer, Boston (2001). https://doi.org/10.1007/978-1-4615-1539-5

    Book  MATH  Google Scholar 

  14. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  15. Wang, S.Y., Ling, W., Min, L., Ye, X.: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145, 387–396 (2013)

    Article  Google Scholar 

  16. Fang, C., Kolisch, R., Wang, L., Mu, C.: An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem. Flex. Serv. Manuf. J. 27, 585–605 (2015)

    Article  Google Scholar 

  17. Wu, C., Li, W., Wang, L., Zomaya, A.: Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things. IEEE Trans. Cloud Comput. (2018). https://doi.org/10.1109/tcc.2018.2889482

  18. Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie-Mellon University, Department of Computer Science, pp. 1–20 (1994)

    Google Scholar 

  19. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35

    Chapter  MATH  Google Scholar 

  20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  21. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Chen, W. (2019). A Decomposition-Based Hybrid Estimation of Distribution Algorithm for Practical Mean-CVaR Portfolio Optimization. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics