Skip to main content

EnsembleKQC: An Unsupervised Ensemble Learning Method for Quality Control of Single Cell RNA-seq Sequencing Data

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Single cell RNA sequencing (scRNA-seq) provides a view of high-resolution to reveal the cellular heterogenicity. A series of analysis, such as cell-type identification, differential expression analysis, regulatory relationship detection, could uncover unprecedented biological findings. Prior to these downstream analysis, it’s crucial to remove low-quality cells because they are technical noises which weaken true biological signal and mislead downstream analysis. Existing methods either require setting threshold manually or require true labels for supervised training, which is not appropriate in many cases. We present an unsupervised ensemble learning method, which could automatically identify low-quality cells from single cell RNA-seq sequencing data. This method integrates weak classifiers base on five selected features from housekeeping genes, reads mapping rate and detected genes. To avoid setting thresholds of classifiers manually, it enumerates threshold values within a reasonable range and chooses the most suitable threshold values based on a scoring function. In experiments, it exhibits high and steady accuracy on multiple datasets.

Code is available at https://github.com/mzhq/EnsembleKQC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacher, R., Kendziorski, C.: Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17(1), 63 (2016)

    Article  Google Scholar 

  2. Breunig, M.M., Kriegel, H.P., Ng, R.T., et al.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29(2), pp. 93–104. ACM (2000)

    Google Scholar 

  3. Buettner, F., Natarajan, K.N., Casale, F.P., et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33(2), 155 (2015)

    Article  Google Scholar 

  4. Butte, A.J., Dzau, V.J., Glueck, S.B.: Further defining housekeeping, or “maintenance”, genes Focus on “A compendium of gene expression in normal human tissues”. Physiol. Genomics 7(2), 95–96 (2001)

    Article  Google Scholar 

  5. Diaz, A., Liu, S.J., Sandoval, C., et al.: SCell: integrated analysis of single-cell RNA-seq data. Bioinformatics 32(14), 2219–2220 (2016)

    Article  Google Scholar 

  6. Eisenberg, E., Levanon, E.Y.: Human housekeeping genes are compact. Trends Genet. 19(7), 362–365 (2003)

    Article  Google Scholar 

  7. Gunning, P.W., Ghoshdastider, U., Whitaker, S., et al.: The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 128(11), 2009–2019 (2015)

    Article  Google Scholar 

  8. Hanukogle, I., Tanese, N., Fuchs, E.: Complementary DNA sequence of a human cytoplasmic actin: interspecies divergence of 3′ non-coding regions. J. Mol. Biol. 163(4), 673–678 (1983)

    Article  Google Scholar 

  9. Huo, X., Hu, S., Zhao, C., et al.: Dr.seq: a quality control and analysis pipeline for droplet sequencing. Bioinformatics 32(14), 2221–2223 (2016)

    Article  Google Scholar 

  10. Ilicic, T., Kim, J.K., Kolodziejczyk, A.A., et al.: Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17(1), 29 (2016)

    Article  Google Scholar 

  11. Islam, S., Zeisel, A., Joost, S., et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11(2), 163 (2014)

    Article  Google Scholar 

  12. Jiang, P., Thomson, J.A., Stewart, R.: Quality control of single-cell RNA-seq by SinQC. Bioinformatics 32(16), 2514–2516 (2016)

    Article  Google Scholar 

  13. Kolodziejczyk, A.A., Kim, J.K., Tsang, J.C.H., et al.: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471–485 (2015)

    Article  Google Scholar 

  14. Laschet, J.J., Minier, F., Kurcewicz, I., et al.: Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition. J. Neurosci. 24(35), 7614–7622 (2004)

    Article  Google Scholar 

  15. Leng, N., Chu, L.F., Barry, C., et al.: Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat. Methods 12(10), 947 (2015)

    Article  Google Scholar 

  16. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  17. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1(14), pp. 281–297 (1967)

    Google Scholar 

  18. McCarthy, D.J., Campbell, K.R., Lun, A.T.L., et al.: Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33(8), 1179–1186 (2017)

    Google Scholar 

  19. Pace, N.R.: The universal nature of biochemistry. Proc. Natl. Acad. Sci. 98(3), 805–808 (2001)

    Article  MathSciNet  Google Scholar 

  20. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)

    Article  Google Scholar 

  21. Sawa, A., Khan, A.A., Hester, L.D., et al.: Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl. Acad. Sci. 94(21), 11669–11674 (1997)

    Article  Google Scholar 

  22. Shalek, A.K., Satija, R., Shuga, J., et al.: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505), 363 (2014)

    Article  Google Scholar 

  23. Sirover, M.A.: Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem. 66(2), 133–140 (1997)

    Article  Google Scholar 

  24. Zhu, J., He, F., Hu, S., et al.: On the nature of human housekeeping genes. Trends Genet. 24(10), 481–484 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, A., Zhu, Z., Ye, M., Wang, F. (2019). EnsembleKQC: An Unsupervised Ensemble Learning Method for Quality Control of Single Cell RNA-seq Sequencing Data. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics