Abstract
In this paper, a novel methodology proposed for 3D detection with the purpose of boosting the detection accuracy and keep autonomous vehicles safety. The model takes the point clouds as the input directly. Based on our modified feature pyramid networks and VGG-16 named as FFPNets, which utilizes the one-stage fully convolutional network to detect 3D cars. The experimental result shows the robustness of the model and its superiority. The average precision (AP) of the car for easy, moderate, and hard cases achieves state-of-the-art detection accuracy on KITTI datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, vol. abs/1311.2524 (2013)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, vol. abs/1506.01497 (2015)
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. CoRR, vol. abs/1512.04412 (2015)
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR, vol. abs/1703.06870 (2017)
Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3516–3524 (2017)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. CoRR, vol. abs/1612.00593 (2016)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 828–838. Curran Associates Inc., New York (2018)
Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3D object detection. CoRR, vol. abs/1711.06396 (2017)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, vol. abs/1506.02640 (2015)
Wu, B., Iandola, F.N., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. CoRR, vol. abs/1612.01051 (2016)
Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR, vol. abs/1612.03144 (2016)
Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D lidar using fully convolutional network. CoRR, vol. abs/1608.07916 (2016)
Caltagirone, L., Scheidegger, S., Svensson, L., Wahde, M.: Fast lidar-based road detection using fully convolutional neural networks. CoRR, vol. abs/1703.03613 (2017)
Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. CoRR, vol. abs/1611.07759 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556 (2014)
Lin, T., Dollar, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR, vol. abs/1612.03144 (2016)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, vol. abs/1512.03385 (2015)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18, 3337 (2018)
Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: The European Conference on Computer Vision (ECCV), September 2018
Ku, J., Mozian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. CoRR, vol. abs/1712.02294 (2017)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. CoRR, vol. abs/1711.08488 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wen, L., Jo, KH. (2019). Fully Convolutional Neural Networks for 3D Vehicle Detection Based on Point Clouds. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_56
Download citation
DOI: https://doi.org/10.1007/978-3-030-26969-2_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26968-5
Online ISBN: 978-3-030-26969-2
eBook Packages: Computer ScienceComputer Science (R0)