Skip to main content

Graph-SLAM Based Hardware-in-the-Loop-Simulation for Unmanned Aerial Vehicles Using Gazebo and PX4 Open Source

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

  • 1712 Accesses

Abstract

This paper presents a method to simulate the graph simultaneous localization and mapping (Graph-SLAM) for a Unmanned Aerial vehicle (UAV) by using the hard-in-the-loop-simulation (HILS). This method uses the Gazebo software to render six-degree-of-freedom (6 DOF) UAV model, the virtual sensor model and virtual RGB-D camera model. To drive the UAV in Gazebo, the flight control based on PX4 open source code is performed on the Pixhawk board hardware. A Graph-SLAM algorithm open source named RTAB-MAP which is modified and installed on the Raspberry board, is used to estimate the 3D mapping of the environment and localization of UAV in map. A control application software (CAS) is developed to connect all parts of HILS such as the Gazebo, Pixhawk and Raspberry by using the multithread architecture. Numerical simulation has been performed to demonstrate the effectiveness of the HILS configuration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Zentani, D.M., Zerek, A., Elmelhi, A.M., Academy, I.: Design of a flight control system based on HILS test platform. In: International Conference on Control Engineering & Information Technology, Tunisia (2017)

    Google Scholar 

  2. Jeonghoon, K., Yunsick, S.: Autonomous UAV flight control for GPS-based navigation. IEEE Access 6, 37947–37955 (2018)

    Article  Google Scholar 

  3. Duan, H., Zhang, Q.: Visual measurement in simulation environment for vision based UAV autonomous aerial refueling. IEEE Trans. Instrum. Meas. 64, 2468–2480 (2015)

    Article  Google Scholar 

  4. Mingu, K., Daewon, L., Jaemann, P., Chulwoo, P., Hyoun, J.K., Youdan, K.: Vision-based hardware-in-the loop simulation test of vision based net recovery for fixed wing unmanned aerial vehicle. In: Third Asia-Pacific International Symposium on Aero-space Technology (2011)

    Google Scholar 

  5. Trilaksono, B.R., Triadhitama, R., Adiprawita, W., Wibowo, A.: Hardware-in-the-loop simulation for visual target tracking of octorotor UAV. Aircr. Eng. Aerosp. Technol. 83, 407–419 (2011)

    Article  Google Scholar 

  6. Gans, N.R., Dixon, W.E., Lind, R., Kurdila, A.: A hardware in the loop simulation platform for vision-based control of unmanned air vehicles. Mechatronics 19, 1043–1056 (2009)

    Article  Google Scholar 

  7. Wei, Q., et al.: Manipulation task simulation using ROS and Gazebo. In: International Conference on Robotics and Biomimetics, Indonesia (2014)

    Google Scholar 

  8. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 400–411. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34327-8_36

    Chapter  Google Scholar 

  9. Odelga, M., Stegagno, P., Bülthoff, H.H., Ahmad, A.: A setup for multi-UAV hard-ware-in-the-loop simulations. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems, Mexico, pp. 204–210 (2015)

    Google Scholar 

  10. Bu, Q., Wan, F., Xie, Z., Ren, Q., Zhang, J., Liu, S.: General simulation platform for vision based UAV testing. In: 2015 IEEE International Conference on Information and Automation, China, pp. 2512–2516 (2015)

    Google Scholar 

  11. Khoa, D.N., Cheolkeun, H.: Development of hardware-in-the-loop simulation based on Gazebo and Pixhawk for unmanned aerial vehicles. Int. J. Aeronaut. Space Sci. 19(1), 238–249 (2018)

    Google Scholar 

  12. Nguyen, K.D., Ha, C.: Vision-based hardware-in-the-loop-simulation for unmanned aerial vehicles. In: Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.) ICIC 2018. LNCS, vol. 10954, pp. 72–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95930-6_8

    Chapter  Google Scholar 

  13. Jithu, G., Jayasree, P.R.: Quadrotor modelling and control. In: International Conference on Electrical, Electronics, and Optimization Techniques, India (2016)

    Google Scholar 

  14. Fernando, H.C.T.E., De Silva, A.T.A., De Zoysa, M.D.C., Dilshan, K.A.D.C., Munasinghe, S.R.: Modelling, simulation and implementation of a quadrotor UAV. In: International Conference on Industrial and Information Systems, Sri Lanka (2013)

    Google Scholar 

  15. Christian, B.A., Ruth, P.J.L., Diogenes, A.D.P.: Position estimation using inertial measurement unit (IMU) on a quadcopter in an enclosed environment. Int. J. Comput. Commun. Instrum. Eng. 3, 1477–2349 (2016)

    Google Scholar 

  16. Seong-Hoon, W., William, M., Farid, G.: Position and orientation estimation using Kalman filtering and particle diltering with one IMU and one position sensor. In: 34th Annual Conference of IEEE Industrial Electronics, USA (2008)

    Google Scholar 

  17. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  18. Lan-Rong, D., Chang-Min, H., Yin-Yi, W.: Implementation of RANSAC algorithm for feature-based image registration. J. Comput. Commun. 1, 46–50 (2013)

    Google Scholar 

  19. Ying, H., Bin, L., Jun, Y., Shunzhi, L., Jin, H.: An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features. Sensors 17, 1862 (2017)

    Article  Google Scholar 

  20. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  21. Labbé, M., Michaud, F.: Long-term online multi-session graph-based SPLAM with memory management. Auton. Robots 42(6), 1133–1150 (2018)

    Article  Google Scholar 

  22. Labbé, M., Michaud, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Rob. 29(3), 734–745 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the KHNP (Korea Hydro & Nuclear Power Co., Ltd) Research Fund Haeorum Alliance Nuclear Innovation Center of Ulsan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoa Dang Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, K.D., Nguyen, TT., Ha, C. (2019). Graph-SLAM Based Hardware-in-the-Loop-Simulation for Unmanned Aerial Vehicles Using Gazebo and PX4 Open Source. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics