Abstract
This paper presents a method to simulate the graph simultaneous localization and mapping (Graph-SLAM) for a Unmanned Aerial vehicle (UAV) by using the hard-in-the-loop-simulation (HILS). This method uses the Gazebo software to render six-degree-of-freedom (6 DOF) UAV model, the virtual sensor model and virtual RGB-D camera model. To drive the UAV in Gazebo, the flight control based on PX4 open source code is performed on the Pixhawk board hardware. A Graph-SLAM algorithm open source named RTAB-MAP which is modified and installed on the Raspberry board, is used to estimate the 3D mapping of the environment and localization of UAV in map. A control application software (CAS) is developed to connect all parts of HILS such as the Gazebo, Pixhawk and Raspberry by using the multithread architecture. Numerical simulation has been performed to demonstrate the effectiveness of the HILS configuration approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Zentani, D.M., Zerek, A., Elmelhi, A.M., Academy, I.: Design of a flight control system based on HILS test platform. In: International Conference on Control Engineering & Information Technology, Tunisia (2017)
Jeonghoon, K., Yunsick, S.: Autonomous UAV flight control for GPS-based navigation. IEEE Access 6, 37947–37955 (2018)
Duan, H., Zhang, Q.: Visual measurement in simulation environment for vision based UAV autonomous aerial refueling. IEEE Trans. Instrum. Meas. 64, 2468–2480 (2015)
Mingu, K., Daewon, L., Jaemann, P., Chulwoo, P., Hyoun, J.K., Youdan, K.: Vision-based hardware-in-the loop simulation test of vision based net recovery for fixed wing unmanned aerial vehicle. In: Third Asia-Pacific International Symposium on Aero-space Technology (2011)
Trilaksono, B.R., Triadhitama, R., Adiprawita, W., Wibowo, A.: Hardware-in-the-loop simulation for visual target tracking of octorotor UAV. Aircr. Eng. Aerosp. Technol. 83, 407–419 (2011)
Gans, N.R., Dixon, W.E., Lind, R., Kurdila, A.: A hardware in the loop simulation platform for vision-based control of unmanned air vehicles. Mechatronics 19, 1043–1056 (2009)
Wei, Q., et al.: Manipulation task simulation using ROS and Gazebo. In: International Conference on Robotics and Biomimetics, Indonesia (2014)
Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Comprehensive simulation of quadrotor UAVs using ROS and Gazebo. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 400–411. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34327-8_36
Odelga, M., Stegagno, P., Bülthoff, H.H., Ahmad, A.: A setup for multi-UAV hard-ware-in-the-loop simulations. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems, Mexico, pp. 204–210 (2015)
Bu, Q., Wan, F., Xie, Z., Ren, Q., Zhang, J., Liu, S.: General simulation platform for vision based UAV testing. In: 2015 IEEE International Conference on Information and Automation, China, pp. 2512–2516 (2015)
Khoa, D.N., Cheolkeun, H.: Development of hardware-in-the-loop simulation based on Gazebo and Pixhawk for unmanned aerial vehicles. Int. J. Aeronaut. Space Sci. 19(1), 238–249 (2018)
Nguyen, K.D., Ha, C.: Vision-based hardware-in-the-loop-simulation for unmanned aerial vehicles. In: Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.) ICIC 2018. LNCS, vol. 10954, pp. 72–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95930-6_8
Jithu, G., Jayasree, P.R.: Quadrotor modelling and control. In: International Conference on Electrical, Electronics, and Optimization Techniques, India (2016)
Fernando, H.C.T.E., De Silva, A.T.A., De Zoysa, M.D.C., Dilshan, K.A.D.C., Munasinghe, S.R.: Modelling, simulation and implementation of a quadrotor UAV. In: International Conference on Industrial and Information Systems, Sri Lanka (2013)
Christian, B.A., Ruth, P.J.L., Diogenes, A.D.P.: Position estimation using inertial measurement unit (IMU) on a quadcopter in an enclosed environment. Int. J. Comput. Commun. Instrum. Eng. 3, 1477–2349 (2016)
Seong-Hoon, W., William, M., Farid, G.: Position and orientation estimation using Kalman filtering and particle diltering with one IMU and one position sensor. In: 34th Annual Conference of IEEE Industrial Electronics, USA (2008)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Lan-Rong, D., Chang-Min, H., Yin-Yi, W.: Implementation of RANSAC algorithm for feature-based image registration. J. Comput. Commun. 1, 46–50 (2013)
Ying, H., Bin, L., Jun, Y., Shunzhi, L., Jin, H.: An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features. Sensors 17, 1862 (2017)
Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)
Labbé, M., Michaud, F.: Long-term online multi-session graph-based SPLAM with memory management. Auton. Robots 42(6), 1133–1150 (2018)
Labbé, M., Michaud, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Rob. 29(3), 734–745 (2013)
Acknowledgments
This work was supported by the KHNP (Korea Hydro & Nuclear Power Co., Ltd) Research Fund Haeorum Alliance Nuclear Innovation Center of Ulsan University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, K.D., Nguyen, TT., Ha, C. (2019). Graph-SLAM Based Hardware-in-the-Loop-Simulation for Unmanned Aerial Vehicles Using Gazebo and PX4 Open Source. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-030-26969-2_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26968-5
Online ISBN: 978-3-030-26969-2
eBook Packages: Computer ScienceComputer Science (R0)