Skip to main content

Toeplitz Hermitian Positive Definite Matrix Machine Learning Based on Fisher Metric

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

  • 1932 Accesses

Abstract

Here we propose a method to classify radar clutter from radar data using an unsupervised classification algorithm. The data will be represented by Positive Definite Hermitian Toeplitz matrices and clustered using the Fisher metric. Once the clustering algorithm dispose of a large radar database, new radars will be able to use the experience of other radars, which will improve their performances: learning radar clutter can be used to fix some false alarm rate created by strong echoes coming from hail, rain, waves, mountains, cities; it will also improve the detectability of slow moving targets, like drones, which can be hidden in the clutter, flying close to the landform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeuris, B., Vandrebril, R.: The Kähler mean of Block-Toeplitz matrices with Toeplitz structured blocks (2016)

    Article  MathSciNet  Google Scholar 

  2. Chevallier, E., Forget, T., Barbaresco, F., Angulo, J.: Kernel Density Estimation on the Siegel Space with an Application to Radar Processing. Entropy (2016)

    Google Scholar 

  3. Haykin, S.: Adaptive Filter Theory. Pearson (2014)

    Google Scholar 

  4. Arnaudon, M., Barbaresco, F., Yang, L.: Riemannian medians and means with applications to radar signal processing. IEEE J. 7(4), 595–604 (2013)

    Google Scholar 

  5. Barbaresco, F.: Super resolution spectrum analysis regularization: burg, capon and AGO-antagonistic algorithms. In: EUSIPCO 1996, Trieste, Italy, pp. 2005–2008 (1996)

    Google Scholar 

  6. Barbaresco, F.: Information geometry of covariance matrix: cartan-siegel homogeneous bounded domains, mostow/berger fibration and fréchet median. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 199–256. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30232-9_9

    Chapter  MATH  Google Scholar 

  7. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52844-0. ISBN 978-3-662-52844-0. http://www.springer.com/us/book/9783662528433

    Book  MATH  Google Scholar 

  8. Bini, D., Iannazzo, B., Jeuris, B., Vandebril, R.: Geometric means of structured matrices. BIT 54(1), 55–83 (2014)

    Article  MathSciNet  Google Scholar 

  9. Barrie Billingsley, J.: Low-Angle Radar Land Clutter, Measurements and Empirical Models. William Andrew Publishing, Norwich (2002)

    Google Scholar 

  10. Greco, M.S., Gini, F.: Radar Clutter Modeling

    Google Scholar 

  11. Arnaudon, M., Barbaresco, F., Yang, L.: Riemannian medians and means with applications to radar signal processing. IEEE Trans. Sig. Proc.

    Google Scholar 

  12. Decurninge, A., Barbaresco, F.: Robust burg estimation of radar scatter matrix for mixtures of gaussian stationary autoregressive vectors. IET Radar Sonar Navig. 11(1), 78–89 (2016)

    Article  Google Scholar 

  13. Barbaresco, F., Forget, T., Chevallier, E., Angulo, J.: Doppler spectrum segmentation of radar sea clutter by mean-shift and information geometry metric (2017)

    Google Scholar 

  14. Barbaresco, F.: Radar micro-doppler signal encoding in siegel unit poly-disk for machine learning in fisher metric space. In: IRS 2018, Bonn, June 2018

    Google Scholar 

Download references

Acknowledgments

We thank the French MoD DGA MRIS for funding (convention CIFRE \(N^{\circ } 2017.0008\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Cabanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabanes, Y., Barbaresco, F., Arnaudon, M., Bigot, J. (2019). Toeplitz Hermitian Positive Definite Matrix Machine Learning Based on Fisher Metric. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics