Skip to main content

Selective Metamorphosis for Growth Modelling with Applications to Landmarks

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

  • 1936 Accesses

Abstract

We present a framework for shape matching in computational anatomy allowing users control of the degree to which the matching is diffeomorphic. The control is a function defined over the domain describing where to violate the diffeomorphic constraint. The location can either be specified from prior knowledge of the growth location or learned from data. We consider landmark matching and infer the distribution of a finite dimensional parameterisation of the control via Markov chain Monte Carlo. Preliminary analytical and numerical results are shown and future paths of investigation are laid out.

A. Arnaudon acknowledges EPSRC funding through award EP/N014529/1 via the EPSRC Centre for Mathematics of Precision Healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(1), 3–29 (2007)

    Article  MathSciNet  Google Scholar 

  2. Allassonnière, S., Kuhn, E., Trouvé, A.: Map estimation of statistical deformable templates via nonlinear mixed effects models: deterministic and stochastic approaches. In: 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 80–91 (2008)

    Google Scholar 

  3. Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Found. Comput. Math. 19, 653–701 (2018)

    Article  MathSciNet  Google Scholar 

  4. Arnold, V.I.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applicationsa l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966)

    Article  MathSciNet  Google Scholar 

  5. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  6. Cotter, C.J., Cotter, S.L., Vialard, F.-X.: Bayesian data assimilation in shape registration. Inverse Probl. 29(4), 045011 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 311–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-12385-1_7

    Chapter  Google Scholar 

  9. Goriely, A.: The Mathematics and Mechanics of Biological Growth, vol. 45. Springer, New York (2017). https://doi.org/10.1007/978-0-387-87710-5

    Book  MATH  Google Scholar 

  10. Grenander, U., Miller, M.I.: Representations of knowledge in complex systems. J. R. Stat. Society. Ser. B (Methodol.) 56, 549–603 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)

    Article  MathSciNet  Google Scholar 

  12. Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic point matching. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 205–219. Springer, Boston (2006). https://doi.org/10.1007/0-387-28831-7_13

    Chapter  Google Scholar 

  13. Hairer, M., Stuart, A.M., Vollmer, S.J., et al.: Spectral gaps for a metropolis-hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)

    Article  MathSciNet  Google Scholar 

  14. Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67(4), 661–685 (2009)

    Article  Google Scholar 

  15. Kaltenmark, I.: Geometrical growth models for computational anatomy. Ph.D. thesis, Université Paris-Saclay (2016)

    Google Scholar 

  16. Kühnel, L., Arnaudon, A., Sommer, S.: Differential geometry and stochastic dynamics with deep learning numerics. arXiv preprint arXiv:1712.08364 (2017)

  17. Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen 2017. LNCS, vol. 10551, pp. 164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_15

    Chapter  Google Scholar 

  18. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)

    Article  Google Scholar 

  19. Richardson, C.L., Younes, L.: Metamorphosis of images in reproducing kernel Hilbert spaces. Adv. Comput. Math. 42(3), 573–603 (2016)

    Article  MathSciNet  Google Scholar 

  20. Schiratti, J.-B., Allassonnière, S., Colliot, O., Durrleman, S.: A Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18(1), 4840–4872 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Theano Development Team, Al-Rfou, R., et al.: Theano: a Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)

  22. Trouvé, A.: An infinite dimensional group approach for physics based models in pattern recognition. Preprint (1995)

    Google Scholar 

  23. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)

    Article  Google Scholar 

  24. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MathSciNet  Google Scholar 

  25. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)

    Article  MathSciNet  Google Scholar 

  26. Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Arnaudon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bock, A., Arnaudon, A., Cotter, C. (2019). Selective Metamorphosis for Growth Modelling with Applications to Landmarks. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics