Abstract
We present a framework for shape matching in computational anatomy allowing users control of the degree to which the matching is diffeomorphic. The control is a function defined over the domain describing where to violate the diffeomorphic constraint. The location can either be specified from prior knowledge of the growth location or learned from data. We consider landmark matching and infer the distribution of a finite dimensional parameterisation of the control via Markov chain Monte Carlo. Preliminary analytical and numerical results are shown and future paths of investigation are laid out.
A. Arnaudon acknowledges EPSRC funding through award EP/N014529/1 via the EPSRC Centre for Mathematics of Precision Healthcare.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(1), 3–29 (2007)
Allassonnière, S., Kuhn, E., Trouvé, A.: Map estimation of statistical deformable templates via nonlinear mixed effects models: deterministic and stochastic approaches. In: 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 80–91 (2008)
Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic shape analysis. Found. Comput. Math. 19, 653–701 (2018)
Arnold, V.I.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applicationsa l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16(1), 319–361 (1966)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)
Cotter, C.J., Cotter, S.L., Vialard, F.-X.: Bayesian data assimilation in shape registration. Inverse Probl. 29(4), 045011 (2013)
Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)
Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 311–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-12385-1_7
Goriely, A.: The Mathematics and Mechanics of Biological Growth, vol. 45. Springer, New York (2017). https://doi.org/10.1007/978-0-387-87710-5
Grenander, U., Miller, M.I.: Representations of knowledge in complex systems. J. R. Stat. Society. Ser. B (Methodol.) 56, 549–603 (1994)
Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)
Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic point matching. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 205–219. Springer, Boston (2006). https://doi.org/10.1007/0-387-28831-7_13
Hairer, M., Stuart, A.M., Vollmer, S.J., et al.: Spectral gaps for a metropolis-hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)
Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67(4), 661–685 (2009)
Kaltenmark, I.: Geometrical growth models for computational anatomy. Ph.D. thesis, Université Paris-Saclay (2016)
Kühnel, L., Arnaudon, A., Sommer, S.: Differential geometry and stochastic dynamics with deep learning numerics. arXiv preprint arXiv:1712.08364 (2017)
Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen 2017. LNCS, vol. 10551, pp. 164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67675-3_15
Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)
Richardson, C.L., Younes, L.: Metamorphosis of images in reproducing kernel Hilbert spaces. Adv. Comput. Math. 42(3), 573–603 (2016)
Schiratti, J.-B., Allassonnière, S., Colliot, O., Durrleman, S.: A Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued observations. J. Mach. Learn. Res. 18(1), 4840–4872 (2017)
Theano Development Team, Al-Rfou, R., et al.: Theano: a Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688 (2016)
Trouvé, A.: An infinite dimensional group approach for physics based models in pattern recognition. Preprint (1995)
Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)
Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)
Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)
Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bock, A., Arnaudon, A., Cotter, C. (2019). Selective Metamorphosis for Growth Modelling with Applications to Landmarks. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-26980-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26979-1
Online ISBN: 978-3-030-26980-7
eBook Packages: Computer ScienceComputer Science (R0)