Skip to main content

Variational Discretization Framework for Geophysical Flow Models

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Abstract

We introduce a geometric variational discretization framework for geophysical flow models. The numerical scheme is obtained by discretizing, in a structure-preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Being based on a discrete version of the Euler-Poincaré variational method, this discretization approach is widely applicable. We present an overview of structure-preserving variational discretizations of various equations of geophysical fluid dynamics, such as the Boussinesq, anelastic, pseudo-incompressible, and rotating shallow-water equations. We verify the structure-preserving nature of the resulting variational integrators for test cases of geophysical relevance. Our framework applies to irregular mesh discretizations in 2D and 3D in planar and spherical geometry and produces schemes that preserve invariants of the equations such as mass and potential vorticity. Descending from variational principles, the discussed variational schemes exhibit a discrete version of Kelvin circulation theorem and show excellent long term energy behavior.

Supported by ANR (ANR-14-CE23-0002-01) and Horizon 2020 (No 657016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, W., Gay-Balmaz, F.: Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations, J. Comp. Dyn., 6(1) (2019). https://doi.org/10.3934/jcd.2019001

    Article  Google Scholar 

  2. Bauer, W., Gay-Balmaz, F.: Variational integrators for anelastic and pseudo-incompressible flows, accepted with minor revisions at J. Geom. Mech., Preprint: https://arxiv.org/abs/1701.06448 (2019)

  3. Bauer, W., Gay-Balmaz, F.: Variational integrators for soundproof models on arbitrary triangular C-grids. Preprint: https://hal.inria.fr/view/index/docid/1970335 (2019)

  4. Bendall, T.M., Cotter, C.J.: Statistical properties of an enstrophy conserving discretisation for the stochastic quasi-geostrophic equation. Geophysical and Astrophysical Fluid Dynamics, ISSN: 0309–1929 (2018)

    Google Scholar 

  5. Brecht, R., Bauer, W., Bihlo, A., Gay-Balmaz, F., MacLachlan, S.: Variational integrator for the rotating shallow-water equations on the sphere. Q. J. Meteorol. Soc. 145, 1070–1088 (2018)

    Article  Google Scholar 

  6. Desbrun, M., Gawlik, E.S., Gay-Balmaz, F., Zeitlin, V.: Variational discretization for rotating stratified fluids. Discr. Cont. Dyn. Syst. - A 34, 479–511 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Dubinkina, S., Frank, J.: Statistical mechanics of Arakawa’s discretizations. J. Computat. Phys. 227, 1286–1305 (2007)

    Article  MathSciNet  Google Scholar 

  8. Durran, D.R.: Improving the anelastic approximation. J. Atmos. Sci. 46, 1453–1461 (1989)

    Article  Google Scholar 

  9. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  10. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  Google Scholar 

  11. Klein, R.: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn. 23, 161–195 (2009)

    Article  Google Scholar 

  12. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J., Desbrun, M.: Structure-preserving discretization of incompressible fluids. Phys. D: Nonlinear Phenom. 240(6), 443–458 (2011)

    Article  MathSciNet  Google Scholar 

  14. Wan, A.T.S., Nave, J.C.: On the arbitrarily long-term stability of conservative methods. SIAM J. Numer. Anal. 56(5), 2751–2775 (2018)

    Article  MathSciNet  Google Scholar 

  15. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, W., Gay-Balmaz, F. (2019). Variational Discretization Framework for Geophysical Flow Models. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics