Skip to main content

Computational Investigations of an Obstacle-Type Shape Optimization Problem in the Space of Smooth Shapes

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

We investigate and computationally solve a shape optimization problem constrained by a variational inequality of the first kind, a so-called obstacle-type problem, with a gradient descent and a BFGS algorithm in the space of smooth shapes. In order to circumvent the numerical problems related to the non-linearity of the shape derivative, we consider a regularization strategy leading to novel possibilities to numerically exploit structures, as well as possible treatment of the regularized variational inequality constrained shape optimization in the context of optimization on infinite dimensional Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  2. Alnæs, M.S., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  3. Bock, H.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-68220-9_8

    Chapter  Google Scholar 

  4. Denkowski, Z., Migorski, S.: Optimal shape design for hemivariational inequalities. Universitatis Iagellonicae Acta Matematica 36, 81–88 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Führ, B., Schulz, V., Welker, K.: Shape optimization for interface identification with obstacle problems. Vietnam. J. Math. (2018). https://doi.org/10.1007/s10013-018-0312-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gasiński, L.: Mapping method in optimal shape design problems governed by hemivariational inequalities. In: Cagnol, J., Polis, M., Zolésio, J.-P. (eds.) Shape Optimization and Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 277–288. Marcel Dekker, New York (2001)

    MATH  Google Scholar 

  8. Hintermüller, M., Laurain, A.: Optimal shape design subject to elliptic variational inequalities. SIAM J. Control. Optim. 49(3), 1015–1047 (2011)

    Article  MathSciNet  Google Scholar 

  9. Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities and their applications. M2AN Math. Model. Numer. Anal. 37, 41–62 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM Math. Model. Numer. Anal. 37(1), 41–62 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, vol. 31. SIAM, Philadelphia (1980)

    MATH  Google Scholar 

  12. Kocvara, M., Outrata, J.: Shape optimization of elasto-plastic bodies governed by variational inequalities. In: Zolésio, J.-P. (ed.) Boundary Control and Variation. Lecture Notes in Pure and Applied Mathematics, vol. 163, pp. 261–271. Marcel Dekker, New York (1994)

    Google Scholar 

  13. Kriegl, A., Michor, P.: The Convient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  14. Liu, W., Rubio, J.: Optimal shape design for systems governed by variational inequalities, Part 1: existence theory for the elliptic case. J. Optim. Theory Appl. 69(2), 351–371 (1991)

    Article  MathSciNet  Google Scholar 

  15. Luft, D., Schulz, V.H., Welker, K.: Efficient techniques for shape optimization with variational inequalities using adjoints. arXiv:1904.08650 (2019)

  16. Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MathSciNet  Google Scholar 

  17. Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113 (2007)

    Article  MathSciNet  Google Scholar 

  18. Myśliński, A.: Level set method for shape and topology optimization of contact problems. In: Korytowski, A., Malanowski, K., Mitkowski, W., Szymkat, M. (eds.) CSMO 2007. IAICT, vol. 312, pp. 397–410. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04802-9_23

    Chapter  MATH  Google Scholar 

  19. Schmidt, S., Ilic, C., Schulz, V., Gauger, N.: Three dimensional large scale aerodynamic shape optimization based on the shape calculus. AIAA J. 51(11), 2615–2627 (2013)

    Article  Google Scholar 

  20. Schulz, V., Welker, K.: On optimization transfer operators in shape spaces. In: Schulz, V., Seck, D. (eds.) Shape Optimization. Homogenization and Optimal Control, pp. 259–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90469-6_13

    Chapter  MATH  Google Scholar 

  21. Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)

    Article  MathSciNet  Google Scholar 

  22. Sokolowski, J., Zolésio, J.-P.: An Introduction to Shape Optimization. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-58106-9

    Book  MATH  Google Scholar 

  23. Udawalpola, R., Berggren, M.: Optimization of an acoustic horn with respect to efficiency and directivity. Int. J. Numer. Methods Eng. 73(11), 1571–1606 (2007)

    Article  MathSciNet  Google Scholar 

  24. Welker, K.: Optimization in the space of smooth shapes. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 65–72. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_8

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Welker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luft, D., Welker, K. (2019). Computational Investigations of an Obstacle-Type Shape Optimization Problem in the Space of Smooth Shapes. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics